The predictions of Deep Neural Networks (DNNs) are hard to un-
derstand from parameters/activations alone. This is problematic
for

— developers, who want to improve their models

—non-experts who want explanations for decisions taken with
respect to their data

Therefore, several approximative post-hoc explanation
methods have been proposed to explain predictions of DNNs.

Contribution
We propose two novel, highly scalable experimental
paradigms to evaluate explanation methods for NLP classifi-
cation tasks.

We evaluate six families of explanation methods on five architec-
tures, on small context and large context tasks and three corpora.
This is the most comprehensive evaluation for NLP to date.

Results in a nutshell
LRP and DeepLIFT are the most consistent methods

Substring LIME (LIMSSE) works best on the hybrid docu-

ment task (small context) but fails the morphosyntactic agree-

ment task (large context)

Input gradient is competitive on CNN, but not on RNNs

Evaluated explanation methods

Definition: an explanation method is a function (¢, k, x)
that returns real-valued scores for positions ¢ in text x for class
k. For instance, in sentiment classification we would expect
¢(1, positive, |“great”, “bar”’|) > ¢(2, positive, | “great”, “bar’|).

Input gradient
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where k is a class, e; is an embedding vector, EE are concate-
nated embedding vectors, o(k,E) is one of p(k|E) or s(k, E)
(pre-softmax class scores).

Layer-wise relevance propagation (LRP)
. . a;W;
R(i) =) _; R(j)a’j+esigﬁ7(a’j) Bach et al., 2015

where j are neurons downstream from ¢, a’ and a are activations
before and after a nonlinearity, w is a weight and esign(a’) a small
signed constant.

Modification for LSTM / GRU: treat sigmoid gates as weights
rather than neurons [Arras et al., 2017].

DeepLIFT |Ancona et al., 2018
Like LRP, but:
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LIMSSE

LIME (Local Interpretable Model-agnostic Explanations) probes
DNN with random inputs drawn from x and fits a linear model
to observed behavior |Ribeiro et al., 2016|. The original BOW
sampling is inappropriate for word-order sensitive CNN/RNN.
Therefore, LIMSSE draws random substrings:

limsse(¢, k, x) = argmin,, , >, L(n, k)

limsse™: L(n, k) = (o(k,zn) — by - v,)?

limsse””: L(n, k) = log(o(by, - vi)I[f(zn) = K]
+og(1 — o(bp - vi))I[f(2zn) # K

where z,, is a substring of x, b, € {0,1}! indicates presence or
absence of tokens in z,, o(k, zy) is one of p(k|zy), s(k, zy).

Perturbation methods

Omit or occlude all N-grams that contain z; and average over the
change in output.

Pocey(t, k,x) = % 27]7\/[:1[8(/6, E)—
s(k,le1...e_N_12n01...0x€11y ... e7])] [Liet al., 2016

Pomity (t: k. %) = 5 Sy [s(k, E) -
s(k,le1...e_N_11n€ttn--.e7])] [Kadar et al., 2017

Cell decomposition |Murdoch and Szlam, 2017
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Hybrid

e Train DNN on some document classification task.

document paradigm

e Sentence-tokenize documents in test set and shuffle.

e Reconcatenate sentences, ten at a time, into hybrid documents.
Remember for every token the class of its document of origin.

e Let DNN classify a hybrid document: f(x).

e Let explanation method find the most relevant token for this classifica-
tion. If this token stems from a document with gold label f(x), count

sample as a hit point.

e Calculcate the ratio of hit points to the number of samples (pointing

game accuracy) [Zhang et al., 2016

e Data: 20 newsgroups |

Experiment

Lang, 1995] for topic classification, subset of yelp

dataset challenge for binary sentiment classification

e DNNs:
embeddings,

GloVe

followed by

pre-tained  word
I-layer  LSTM

Pennington et al., 2014
bidirectional

Hochreiter and Schmidhuber, 1997, GRU

Cho et al., 2014|, Quasi-

LSTM, Quasi-GRU |[Bradbury et al., 2017] or CNN with max-pooling

Collobert et al., 2011

e Also:

Comparison

, followed by softmax

with  human  relevance  benchmark

Mohseni and Ragan, 2018| on subset of 20 newsgroups corpus

Morphosyntactic agreement paradigm
e Given: POS-tagged, parsed corpus

e Train DNN to predict a morphological feature of an agreeing word based
on context (here: number of verb based on left context)

e For every test set sample, find most relevant token for the prediction:
argmass[6(t, f(x), )

o [f f(x) is correct, check if most relevant token is the head (here: the
subject). If so, count a hittareet point.

e Regardless of whether f(x) is correct, check if most relevant token has
the predicted feature (here: another noun with predicted number). If
so, count a hitgatyre point.

e Example: The man with the telescope [is...] — maximal relevance
on telescope gives hitfo,tyre point, maximal relevance on man gives
hittarget and hitg,ype poINt.

e Calculate pointing game accuracy.

Experiment
e Data: Automatically annotated English wikipedia |Linzen et al., 2016

e DNNs: Randomly initialized word embeddings, followed by unidirec-
tional 1-layer LSTM, GRU, Quasi-LSTM or Quasi-GRU, followed by

softmax

hybrid document experiment man. groundtruth morphosyntactic agreement experiment
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Discussion

e Modified LRP and DeepLIFT are the most consis-
tent methods across tasks and architectures

e Magnitude-sensitive LIMSSE wins the hybrid docu-

decomp initially a pagan culture , detailed information about the return of the christian religion to the islands during the norse-era [is ...]
deeplift initially a pagan culture , detailed information about the return of the christian religion to the islands during the norse-era [is ...]
limsse)” initially a pagan culture , detailed information about the return of the christian religion to the islands during the norse-era [is .. ]

ment task, but fails on the morphosyntactic agree-

ment task — failure to capture dependencies that gradl?

span large contexts

e Gradient L2-norm is not competitive, due to its in-
ability to distinguish evidence for and against k

e Gradient-embedding dot product is competitive on
CNN, with decent results on GRU. It fails on

From : kolstad @ cae.wisc.edu ( Joel Kolstad ) Subject : Re : Can Radio Freq . Be Used To Measure Distance ? [...] What is the
(Q)LSTM Hypothegis: LSTM memory vectors can Irp difference between vertical and horizontal 7 Gravity ? Does n’t gravity pull down the photons and cause a doppler shift or something 7
( Just kidding ! )

become indefinitely big and may saturate the final

tanh nonlinearity. GRU hidden vectors are con-
stantly kept in [—1, 1].

e Gradient integration leads to small improvements,
but does not remedy the situation on LSTM.

e Input perturbation mostly not competitive.

e Cell decomposition works well on LSTM, but not
consistently on other architectures.

Morphosyntactic agreement experiment. Verb context classified singular by LSTM.
Underlined: subject. Green: evidence for singular.

limsse

If you find faith to be honest , show me how . David The whole denominational mindset only causes more problems , sadly . ( See
section 7 for details . ) Thank you . "The Armenians just shot and shot . Maybe coz they 're “quality’ cars ; - ) 200 posts/day . |...]

If you find faith to be honest , show me how . David The whole denominational mindset only causes more problems , sadly . ( See section
7 for details . ) Thank you . "The Armenians just shot and shot . Maybe coz they 're ‘quality’ cars ; - ) 200 posts/day . |...]

Hybrid newsgroup post classified talk.politics.mideast by QGRU. Underlined:
talk.politics.mideast fragment. Green: evidence for talk.politics.mideast.

Manually annotated sci.electronics post classified by CNN. The explanation method
highlights overfitting (“Kolstad” has 11 out of 13 appearances in sci.electronics docu-
ments), but this is not rewarded by the manual ground truth.

S [...] FTP to ftp.uw.net : graphics/jpeg/jpegsrc.v 7 .tar.Z Do n’t forget to set binary mode when you FTP tar files . Interplanetary . :
3 +49 231 755-4663 D-W4600 Dortmund 50

Fax : 4+49 231 755-2386

~ [...] FTP to ftp.uw.net : graphics/jpeg/jpegsrc.v 7 .tar.Z Do n’t forget to set binary mode when you FTP tar files . Interplanetary . :
— +49 231 755-4663 D-W4600 Dortmund 50

Fax : +49 231 755-2386

Hybrid newsgroup post classified comp.windows.x by LSTM. The explanation methods
highlight overfitting (the address only appears in comp.windows.x posts).




