

DEPARTMEN

Zero-shot Learning of Classifiers from Natural Language Quantification Shashank Srivastava, Igor Labutov, Tom Mitchell Carnegie Mellon University

Motivation

Declarative supervision from NL can enable learning with limited or no labeled examples

- Show my important emails. What are important emails? If the subject says 'urgent', it is almost certainly important. Most emails from John are important. Emails that I reply to are **usually** important. Unimportant emails are **often** sent to a list Quantifier adjectives and adverbs are explicit denoters of generality
- Use semantics of quantifiers to drive classifier training

Idea

NL encodes key properties that aid statistical learning

'Emails that I reply to are usually important'

- 1. Features important for a learning problem ✓ **x** : repliedTo:true
- 2. Class labels
 - ✓ **y** : Important
- 3. Type of Relationship b/w features and labels $\checkmark P(y|x)$
- 4. Strength of Relationship ✓ Specified by quantifier?
- Convert statements to quantitative assertions

P(label:important | replied:true) ~ $p_{usually}$

- Simplest model: approximate quantifiers as point probabilities
 - Pre-register estimates (purely subjective)

Frequency quantifier

always, certainly, definitely, all usually , normally , generally , likely most, majority often , half sometimes, frequently, some, many few, occasionally never, rarely

CONTACT:

Shashank Srivastava ssrivastava@cmu.edu

Approach

Evaluation

Datasets: Three domains, include synthetic and real concepts

Email categorization

Bird species Identification

	Approach	Avg Accuracy
	Bayes Optimal	0.831
	LNQ	0.751
	LR (n=10)	0.737
•	LNQ (coarse quantification)	0.679
	LNQ (no quantification)	0.545
0.8 0.9 1 nal Accuracy	Human learner	0.734

Avg performance on Shape tasks

Learning from Natural Quantification (LNQ) consistently achieves performance comparable with learning from a small number of labeled examples (*LR with n=10*)

Learning is due to differential associative strength of quantifiers. For *Shape* tasks, LNQ is competitive with humans

LNQ is robust to changes in values of probability estimates