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Entity Typing

1. Bill robbed John, and he was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.



!3

Entity Typing

1. Bill robbed John, and he was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.



OBJ

!4

Entity Typing
PER PER

• Information extraction [Ling 12, YY17]
• Coreference resolution [Durrett 14]
• Entity linking [Durrett 14, Raiman 18]
• Question answering [Yavuz 16]

1. Bill robbed John, and he was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.
ORG



Scaling Up Entity Typing: 
Mention Coverage
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1. Bill robbed John, and he was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.



Scaling Up Entity Typing: 
Mention Coverage

Challenge 1 :

Reasoning over diverse, challenging mention strings
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Scaling Up Entity Typing: 
Type Coverage
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Scaling Up Entity Typing: 
Type Coverage

Any frequent nouns from dictionary is allowed as a type 
(10K vocabulary)

OBJ, Product, Electronics

PER, Victim PER, Criminal

ORG, Company

1. Bill robbed John, and he was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.

PER, Criminal

PER, Researcher, Professional



1. Bill robbed John. He was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.

1. Bill robbed John. He was arrested shortly afterwards.

2. Nvidia hands out Titan V for free to AI researchers.

Scaling Up Entity Typing: 
Type Coverage

PER, criminal PER, victimPER, criminal

ORG, company OBJ, product PER, researcher, professional

• Any frequent nouns from dictionary is allowed as a type (10K vocabulary)

Challenge 2 :

Very large label space
12/15/2017 https://homes.cs.washington.edu/~eunsol/finetype_visualization/ours_index.html
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This Talk

• Task: Ultra-Fine  
Entity Typing

• Covers all entity mentions

• Allows all concepts as types

• New Data:
• Crowdsourcing ultra fine-grained typing data

• New source of distant supervision

• New Results:
• Multitask loss for predicting ultra-fine types

• Sets state-of-the-art results on existing benchmark



• New Task: Ultra-Fine Entity Typing

•Related Work

• Crowdsourcing Ultra-Fine labels

• Distant Supervision 

• Model and Experiments
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Outline



Type Ontology
fine

grained
coarse
grained

Fine grained NER

NER

 12

Fine grained NER
Named
Entity

He was elected over John McCain

Person, Politician

Pronominals

Nominals



He was elected over John McCain

Person, Politician

Type Ontology
fine

grained
coarse
grained

Fine grained NER

NER

Person, Politician

Fine grained NER

FIGER [Ling 12] OntoNotes [Gillick 14] TypeNet [next talk]

2K types
14 hierarchy level

112 types
2 hierarchy level

 13

89 types
3 hierarchy level

Ours

10K types
No hierarchy



Type Ontology
fine

grained
coarse
grained

Named
Entity

Label Coverage Problem

NER

He was elected over [ John McCain ].

Person, Politician

Fine grained NER

• In both, top 9 types covers over 80% of the 

evaluation data.

• In OntoNotes, 52% of mentions was marked 

as “Other”.  

 14

Paris Agreement Security Mortgages Oil

https://en.wikipedia.org/wiki/United_States_presidential_election,_2008
https://en.wikipedia.org/wiki/John_McCain
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Label Distribution In Evaluation Data
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FIGER [Ling 12]

OntoNotes [Gillick 14]

Label Distribution In Evaluation Data
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• New Task: Ultra-Fine Entity Typing

• Related Work

•Crowdsourcing Ultra-Fine labels

• Distant Supervision 

• Model and Experiments

!17

This Talk



Automatic Mention Detection

 In 1817,  in  collaboration  with  David  Hare,  he set  up  
the  Hindu  College.

• Maximal noun phrases from the constituency parser (Manning et al 14)
• Mentions from the co-reference resolution system (Lee et al 17)

 In [1817],  in  [collaboration  with  David  Hare],  [he] set  
up  [the  Hindu  College].
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Crowdsourcing Type Labels

• Label space: 10K most common nouns from Wiktionary

• Five crowd workers provide labels per each example

 19

Context General Specific

Michael Buble putting career ‘on hold’ after son’s cancer diagnosis Person Parent Professional



Crowdsourcing Type Labels

• Label space: 10K most common nouns from Wiktionary

• Five crowd workers provide labels per each example

• Collected 6K examples, 5.2 labels per example.

• On average, 1 general type, 4 fine types
 20

Context General Specific

Michael Buble putting career ‘on hold’ after son’s cancer diagnosis Person Parent Professional



town, company, space, mountain, work, murderer, journalist, army, outcome, politician, 
duty, document, general_of_the_army, women, employment, community, ballot, stage, 
host, son, friend, investigator, inflation, film, injection, album, music_group, food, milestone, 
chancellor, village, philosopher, military, medicine, river, health, incident, male, actor, 
citizenship, language, prisoner, exhibition, cricketer, attack, singer, battle, religious_leader, 
economy, vice_president, man, benefit, agency, deity, painting, bread, effect, university, 
power, direction, competition, civilian, reviewer, worker, member, cinema, talk, thinker, 
contract, landmark, fashion_designer, citizen, investor, territory, train, moss, concert, 
team, troglodyte, consequence, staff, subject, professor, use, tournament, planet, city, 
coach, date, curator, poet, rule, goddess, symptom, senator, month, weapon, parent, crime, 
hiding, general, position, protegee, political, religion, cell, business, designation, 
computer_game, promotion, disaster, historian, poll, institution, transportation, painter, 
free, official, traveller, year, player, beverage, performer, biographer, priest, wind, cash, race, 
guest, area, agreement, prison, analyst, draw, love, police, actress
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Diverse Fine-grained Types



town, company, space, mountain, work, murderer, journalist, army, outcome, politician, 
duty, document, women, employment, community, ballot, stage, host, son, friend, 
investigator, inflation, film, injection, album, music_group, food, milestone, chancellor, 
village, philosopher, military, medicine, river, health, incident, male, actor, citizenship, 
language, prisoner, exhibition, cricketer, attack, singer, battle, religious_leader, 
economy, vice_president, man, benefit, agency, deity, painting, bread, effect, university, 
power, direction, competition, civilian, reviewer, worker, member, cinema, talk, thinker, 
contract, landmark, fashion_designer, citizen, investor, territory, train, moss, concert, 
team, troglodyte, consequence, staff, subject, professor, use, tournament, planet, city, 
coach, date, curator, poet, rule, goddess, symptom, senator, month, weapon, parent, 
crime, hiding, general, position, political, religion, cell, business, designation, 
computer_game, promotion, disaster, historian, poll, institution, transportation, 
painter, free, official, traveller, year, player, beverage, performer, biographer, priest, 
wind, cash, race, guest, area, agreement, prison, analyst, draw, love, police, actress 22

Diverse Fine-grained Types



town, company, space, mountain, work, murderer, journalist, army, outcome, politician, 
duty, document, women, employment, community, ballot, stage, host, son, friend, 
investigator, inflation, film, injection, album, music_group, food, milestone, chancellor, 
village, philosopher, military, medicine, river, health, incident, male, actor, citizenship, 
language, prisoner, exhibition, cricketer, attack, singer, battle, religious_leader, 
economy, vice_president, man, benefit, agency, deity, painting, bread, effect, university, 
power, direction, competition, civilian, reviewer, worker, member, cinema, talk, thinker, 
contract, landmark, fashion_designer, citizen, investor, territory, train, moss, concert, 
team, troglodyte, consequence, staff, subject, professor, use, tournament, planet, city, 
coach, date, curator, poet, rule, goddess, symptom, senator, month, weapon, parent, 
crime, hiding, general, position, political, religion, cell, business, designation, 
computer_game, promotion, disaster, historian, poll, institution, transportation, 
painter, free, official, traveller, year, player, beverage, performer, biographer, priest, 
wind, cash, race, guest, area, agreement, prison, analyst, draw, love, police, actress

Diverse Fine-grained Types

 23

• 2,300 unique types for 6K examples

• To cover 80% of labels, 429 types are needed



town, company, space, mountain, work, murderer, journalist, army, outcome, politician, 
duty, document, women, employment, community, ballot, stage, host, son, friend, 
investigator, inflation, film, injection, album, music_group, food, milestone, chancellor, 
village, philosopher, military, medicine, river, health, incident, male, actor, citizenship, 
language, prisoner, exhibition, cricketer, attack, singer, battle, religious_leader, 
economy, vice_president, man, benefit, agency, deity, painting, bread, effect, university, 
power, direction, competition, civilian, reviewer, worker, member, cinema, talk, thinker, 
contract, landmark, fashion_designer, citizen, investor, territory, train, moss, concert, 
team, troglodyte, consequence, staff, subject, professor, use, tournament, planet, city, 
coach, date, curator, poet, rule, goddess, symptom, senator, month, weapon, parent, 
crime, hiding, general, position, political, religion, cell, business, designation, 
computer_game, promotion, disaster, historian, poll, institution, transportation, 
painter, free, official, traveller, year, player, beverage, performer, biographer, priest, 
wind, cash, race, guest, area, agreement, prison, analyst, draw, love, police, actress

Data Validation
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• 86% binary agreement

• Only collects labels that majority of validators 
(3/5) agreed



• New Task: Ultra-Fine Entity Typing

• Related Work

• Crowdsourcing Ultra-Fine labels

•Distant Supervision 

• Model and Experiments

!25

This Talk



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 
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1. Knowledge Base Supervision



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

Entity linking
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1. Knowledge Base Supervision



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

person, politician, athlete, 
businessman, artist, 

actor, author
{ }

Entity linking
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1. Knowledge Base Supervision



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

person, politician, athlete, 
businessman, artist, 

actor, author
{ }Types:
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1. Knowledge Base Supervision



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

person, politician, athlete, 
businessman, artist, 

actor, author
{ }Types:

Not context sensitive!
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1. Knowledge Base Supervision



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

2. Wikipedia Supervision
Arnold Alois Schwarzenegger is an Austrian-
American actor, producer, businessman, 
investor, author, philanthropist, activist, 
politician and former professional body-builder.

Entity linking
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https://en.wikipedia.org/wiki/Politician


[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

Entity linking
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actor, producer, 
businessman, investor, 
author, philanthropist, 
activist, politician

{ }Types:

2. Wikipedia Supervision



[ Arnold Schwarzenegger]  gives a speech at Mission 
Serve’s service project on Veterans Day 2010. 

Entity linking
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actor, producer, 
businessman, investor, 
author, philanthropist, 
activist, politician

{ }Types:

Still Context Insensitive

2. Wikipedia Supervision
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Entity Name Type

Pille Raadik defender

Byco Petroleum company

Třebešov  village, municipality

Mexican National Championship competition

Palestinian Interest Committee movement

Giovanni Paolo Lancelotti canonist

• 4.6K unique types on 3.1M entities 

2. Wikipedia Supervision



Supervision Summary

Source Preprocessing
Type 

Granularity
Context 

Dependent
Entity 

Coverage

Knowledge
base

Entity linking General X Good

Wikipedia
Entity linking,

Parser
Finer X Better

Source Preprocessing
Type 

Granularity
Context 

Dependent
Entity 

Coverage

Knowledge
base

Entity linking Fine X Good
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3. Head Word Supervision

• [Controversial judge James Pickles] sentences Tracey 
Scott to six months in prison after she admitted 
helping shoplifter.

Using a head word from original noun phrase as a 
source of supervision.

 36



• [Controversial judge James Pickles] sentences Tracey 
Scott to six months in prison after she admitted 
helping shoplifter.

Using a head word from original noun phrase as a 
source of supervision.

Judge{ }Types:
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3. Head Word Supervision



• Parse Errors:  
 
[Consent forms , Institutional Review Boards,] peer review committees and 
data safety committees did not exist decades ago.

• Idiomatic Usages:  
 
 In [addition] there's an USB 1.1 port that can be used to attach to a printer.
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3. Head Word Supervision



Source Preprocessing
Type 

Granularity
Context 

Dependent
Entity 

Coverage

Knowledge
base

Entity linking General

X

Good

Wikipedia
Entity linking,

Parser
Fine-grained Better

Headword
Dependency 

Parser
Finest O Best

Source Preprocessing
Type 

Granularity
Context 

Dependent
Entity 

Coverage

KB Entity linking Fine X Good

Wikipedia
Entity linking,

Parser
Finer X Better
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Supervision Summary 1



Source Cover Accuracy* Scale

KB Named Entities 80% 2.5 M

Wikipedia Named Entities 77% 2.7 M

Headword Nominals 77% 20 M

* Manual examination on 200 examples 
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Supervision Summary II



• New Task: Ultra-Fine Entity Typing

• Related Work

• Crowdsourcing Ultra-Fine labels

• Distant Supervision 

•Model and Experiments

!41

This Talk



Bidirectional RNN Model
• Closely follow previous model for 

fine-grained NER [Shimaoka 17]

• Improved Mention Representation 
(with character-level CNN)

• Single LSTM to cover left, right 
context and mention
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Bidirectional RNN Model
• Closely follow previous model for 

fine-grained NER [Shimaoka 17]

• Improved Mention Representation 
(with character-level CNN)

• Single LSTM to cover left, right 
context and mention
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Multitask Objective

• Binary classification log likelihood 
objective for each label

• Sum loss at different type granularities

 44



Experiments

 45

• Datasets

• Ultra-Fine Entity Typing Dataset

• OntoNotes Fine-Grained Typing Dataset (Gillick et al 14)

• Evaluation Measure

• Macro-averaged Precision, Recall, F1

• Mean Reciprocal Rank



Data Setup

 46

Ultra-Fine Entity Typing Benchmark OntoNotes Dataset (Gillick et al 14)

Train

2K crowdsourced 2.69M KB supervision

20M Headword 2.1M Headword supervision

5M Entity Linking 0.6M Wikipedia supervision

Dev 2K crowdsourced 2K crowdsourced

Test 2K crowdsourced 8K crowdsourced



Comparison Systems

• AttentiveNER Model [Shimaoka et al., 2017]

• Our model

• Ablation on the different sets of supervision
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Ultra-Fine Entity Typing
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Mean Reciprocal Rank 
(MRR)

AttentiveNER 0.223

Ours 0.234



Ultra-Fine Entity Typing
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Mean Reciprocal Rank 
(MRR)

AttentiveNER 0.223

Ours 0.234

• Multitask loss encourages prediction on fine-grained labels, hurting 
precision but improves recall

• Our model architecture (character-level CNN, single LSTM) 
improves the performance
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Ablation Study

person, organization, 
event, object

politician, artist, 
building, company

friend, accident, 
talk, president
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Ablation Study

person, organization, 
event, object

politician, artist, 
building, company

friend, accident, 
talk, president
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• Finer types are harder 
to predict

• Headword is more 
important for ultra-fine 
types,  entity linking for 
fine types.

Ablation Study

person, organization, 
event, object
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OntoNotes Fine-grained Types
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Example Outputs

 54
https://homes.cs.washington.edu/~eunsol/_site/acl18_sample_output.htmlMore Examples at:



Example Outputs

 55
https://homes.cs.washington.edu/~eunsol/_site/acl18_sample_output.htmlMore Examples at:

• Evaluation is still challenging : annotation coverage can be improved

•  Model suffers from recall problem

•  Joint modeling of type labels would be helpful
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This Talk

• Task: Ultra-Fine  
Entity Typing

• Covers all entity mentions

• Allows all concepts as types

• New Data:
• Crowdsourcing ultra fine-grained typing data

• New source of distant supervision

• New Results:
• Multitask loss for predicting ultra-fine types

• Sets state-of-the-art results on existing benchmark



Thank you!
Any Questions?

Data & Code at the project website
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