ANNOTATING TENSE, MOOD AND VOICE FOR ENGLISH, FRENCH AND GERMAN

Anita Ramm^{1,4}, Sharid Loáiciga^{2,3}, Annemarie Friedrich⁴ and Alexander Fraser⁴ ¹University of Stuttgart, ²Université de Genève, ³Uppsala University, ⁴LMU Munich

MOTIVATION

Lack of tools for automatic annotation of **syntactic** tense, mood and voice (TMV):

- English PropBank: annotations for tense, mood and aspect, but no annotations for subjunctive constructions
- **German** TüBa-D/Z: only morphological features of the verbs
- **French** FTB: only morphological features of the verbs

TMV annotations are interesting for different fields of linguistics and NLP:

CONTRIBUTIONS

Tool specifics:

- First publicly available tool for TMV annotation for English, German and French
- Output information: TMV values, negation, progressiveness (EN), coordination, clause boundaries (DE)

- Theoretical research and automatic modeling of mono/cross-lingual use of tense, mood and voice
- Useful features for classification tasks such as authorship, epoch, domain, genre, etc.
- Tool output in the TSV format
- Open-source implementation
- Online demo provided

METHOD

Verbal complexes (VCs):

- Extracted from dependency trees
- Finite as well as non-finite VCs

TMV assignment:

- Based on hand-crafted rules
- **Syntactic** TMV values of a whole VC

TMV rules:

- Rely on POS sequences, morphological as well as lexical information
- Use external verb lists for handling ambiguous active/passive constructions, e.g.: *ist gegangen* vs. *ist geschrieben*

PROCESSING PIPELINE

sentNr	sentence	clause	verbal complex	finite	main	tense	mood	voice	progr	neg	coord
	It will, I hope, be exa-	—	hope	yes	hope	pres	indicative	active	no	no	no
	mined in a positive way.	_	will be examined	yes	examined	future1	indicative	passive	no	no	no

PROBLEM COMPLEXITY \Leftrightarrow VERBAL COMPLEX COMPLEXITY

GERMAN PAST TENSE 'PERFEKT'

HABEN/SEIN $_{pr,ind}$ + PPART						
hat gelesen	perf ind act					
has read						
ist gefahren	perf ind act					
was driving						
ist geschrieben	pres ind pass					
is written						
$SEIN_{pr,ind} + PPART + W$	$SEIN_{pr,ind} + PPART + WERDEN_{ppart}$					
ist gelesen worden	perf ind pass					
has been read						
$MODAL_{pr,ind} + PPART + HABEN/SEIN_{ppart}$						
kann gekommen sein	perf ind act					
could have come						
kann gelesen haben	perf ind act					
could have read						
$HABEN_{pr,ind} + INF + MODAL_{inf}$						
hat sehen können	perf ind act					
could have seen						

 $\bullet \bullet \bullet$

Observations:

- **Two TMV combinations**
 - perf|ind|act & perf|ind|pass but **15 different VCs** (different POS sequence and/or finite verb morphology)!
- Different mood values

(e.g. hätte gesehen (would have seen), könnte gesehen haben (could have seen) additionally enlarge both the TMV set, as well as the number of the differing VC

• Total number of the DE VCs: 170!

Rules need to:

- Consider many different VCs to ensure both high precision, as well as high recall
- Distinguish between **ambiguous VCs** (e.g. will drive vs. would drive)
- Have access to the relevant language**specific information**: POS tags, morphological analysis, lemmas

ANNOTATION ACCURACY

Evaluation of annotations on Mate trees:

Language	tense	mood	voice	all
EN	81.5	88.1	86.1	76.8
DE	80.8	84.0	81.5	76.4
FR	86.1	93.4	82.5	75.2

 \Rightarrow Many errors due to erroneous parses and/or morphological analysis

Evaluation of annotations on gold trees:

Language	tense	mood	voice	all
EN	90.9	90.9	90.0	88.2
DE	88.2	90.9	88.2	88.2
FR	89.2	95.0	85.2	78.4

Observations:

- Confusion between active tenses and certain stative passive constructions
- FR rule set requires further improvements
- VC extraction: falsely attached gerunds: Elizabeth hates being called 'Liz'.

FUTURE WORK

Annotations:

- Development of rules that handle ambiguous constructions
- Addition of missing FR rules
- Improvement of the VC extraction procedures

Tool adaptation/extension:

- Adaptation to the universal dependency trees
- Join us to develop TMV rules for other languages!

DOWNLOAD, TEST AND USE THE TOOL!

Download: https://github.com/aniramm/tmv-annotator Online-demo: https://clarin09.ims.uni-stuttgart.de/tmv/ Feedback: ramm@ims.uni-stuttgart.de

ACKNOWLEDGEMENT

This work has received funding from the DFG grant Models of Morphosyntax for Statistical Machine Translation (Phase 2), the EU's Horizon 2020 research and innovation programme under grant agreement No. 644402 (HimL), and from the ERC under grant agreement No. 640550.

We thank André Blessing for developing the demo version of the tool!