Learning Topic-Sensitive Word Representations

Marzieh Fadaee Arianna Bisazza **Christof Monz** Informatics Institute, University of Amsterdam

	_	
lotiv	1 11	on

- Having one representation per word fails to capture polysemy
- We propose an approach to learn multiple representations per word by topic-modeling the context with HDP

Polysemous word ↔ Diverse contexts ↔ Distinct topic distributions

Topic Model: Hierarchical Dirichlet Process (HDP)

Example: The word "bat" in two different sentences:

document-specific topic distribution

Sampling

- While the team at **bat** is trying to score runs, the team in the field is attempting to record outs.

- The **bat** wing is a membrane stretched across four "extremely" elongated fingers.

Example: Nearest Neighbors of "bat"

Pre-trained	Pre-trained	Skingrom	Topic-Sensitiv	e Skipgram (HTLE)
Skipgram	Glove	Skipgram	T1	$ au_2$
bats	bats	uroderma	ball	vespertilionidae
batting	batting	magnirostrum	pitchout	heran
hitter	Bat	sorenseni	batter	hipposideros
batsman	catcher	miniopterus	toss-for	sorenseni
batted	fielder	promops	umpire	luctus
hoary	hitter	luctus	batting	coxi
Batting	balls	micronycteris	fielder	kerivoula

Evaluation: Lexical Substitution Task

Example: So that in one *way* things in the distressed areas are not as bad as they might be .

Results (Generalized Average Precision)

ModelInference100300600100300600SGE + CN/A36.640.941.632.836.136.8MSSG37.841.142.933.937.839.7HTLE39.842.543.032.132.733.0HTLEaddSampled39.441.341.830.431.531.7STLE35.236.739.032.932.333.9	_			LS-SE07 Dimension			LS-CIC Dimension		
N/A 37.8 41.1 42.9 33.9 37.8 39.7 MSSG 37.8 37.8 41.1 42.9 33.9 37.8 39.7 HTLE 39.8^{\bullet} 42.5^{\bullet} 43.0^{\bullet} 32.1 32.7 33.0 HTLEaddSampled 39.4° 41.3^{\bullet} 41.8 30.4 31.5 31.7 STLE 35.2 36.7 39.0 32.9 32.3 33.9 HTLE 40.3^{\bullet} 42.8^{\bullet} 43.4^{\bullet} 36.6^{\bullet} 40.9^{\bullet} 41.3^{\bullet} HTLE 40.3^{\bullet} 41.8^{\bullet} 42.2 35.5° 37.9° 38.6^{\bullet} STLE 38.7 41.0 41.1 36.8^{\bullet} 36.8 37.1		Model	Inference						600
MSSG 37.8 41.1 42.9 33.9 37.8 39.7 HTLE 39.8 [*] 42.5 [*] 43.0 [*] 32.1 32.7 33.0 HTLEadd Sampled 39.4 [°] 41.3 [*] 41.8 30.4 31.5 31.7 STLE 35.2 36.7 39.0 32.9 32.3 33.9 HTLE 40.3 [*] 42.8 [*] 43.4 [*] 36.6 [*] 40.9 [*] 41.3 HTLE 40.3 [*] 42.8 [*] 43.4 [*] 36.6 [*] 40.9 [*] 41.3 HTLE 39.9 [*] 41.8 [*] 42.2 35.5 [*] 37.9 [°] 38.6 STLE 38.7 41.0 41.1 36.8 [*] 36.8 37.1		SGE + C	N/A	36.6	40.9	41.6	32.8	36.1	36.8
HTLEadd Sampled 39.4 [^] 41.3 [^] 41.8 30.4 31.5 31.7 STLE 35.2 36.7 39.0 32.9 32.3 33.9 HTLE 40.3 [^] 42.8 [^] 43.4 [^] 36.6 [^] 40.9 [^] 41.3 HTLE 39.9 [^] 41.8 [^] 42.2 35.5 [^] 37.9 [^] 38.6 STLE 38.7 41.0 41.1 36.8 [^] 36.8 37.1		MSSG		37.8	41.1	42.9	33.9	37.8	39.1
STLE 35.2 36.7 39.0 32.9 32.3 33.9 HTLE 40.3 [*] 42.8 [*] 43.4 [*] 36.6 [*] 40.9 [*] 41.3 HTLEadd Expected 39.9 [*] 41.8 [*] 42.2 35.5 [*] 37.9 [*] 38.6 STLE 38.7 41.0 41.1 36.8 [*] 36.8 37.1	_	HTLE		39.8 [▲]	42.5 [▲]	43.0 [▲]	32.1	32.7	33.0
HTLE 40.3 ⁺ 42.8 ⁺ 43.4 ⁺ 36.6 ⁺ 40.9 ⁺ 41.3 ⁺ HTLEadd Expected 39.9 ⁺ 41.8 ⁺ 42.2 35.5 ⁺ 37.9 ⁺ 38.6 ⁺ STLE 38.7 41.0 41.1 36.8 ⁺ 36.8 37.1 ⁺		HTLEadd	Sampled	39 .4 [^]	41.3 [▲]	41.8	30.4	31.5	31.7
HTLEadd Expected 39.9 [•] 41.8 [•] 42.2 35.5 [•] 37.9 [•] 38.6 STLE 38.7 41.0 41.1 36.8[•] 36.8 37.1		STLE		35.2	36.7	39.0	32.9	32.3	33.9
		HTLE		40.3 [*]	42.8 [^]	43.4	36.6 [▲]	40.9	41.3
		HTLEadd	Expected	39.9 [▲]	41.8 [▲]	42.2	35.5°	37.9 [△]	38.6
		STLE		38.7	41.0	41.1	36.8 [▲]	36.8	37.1
$\mathbf{N} = \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$	_								

