
A Corpus of Natural Language for Visual Reasoning
(Supplementary Material)

Alane Suhr†, Mike Lewis‡, James Yeh†, and Yoav Artzi†

† Dept. of Computer Science and Cornell Tech, Cornell University, New York, NY 10044
{suhr, yoav}@cs.cornell.edu, jamesclyeh@gmail.com

‡ Facebook AI Research, Menlo Park, CA 94025
mikelewis@fb.com

1 Examples

Table 1 shows ten labeled examples of sentence-
image pairs from our dataset. Figure 1 shows an
example of the JSON structured representation.

2 Features

In the systems that use the structured representa-
tions instead of the images, we use two types of
features.

2.1 Image and Sentence Features

Each feature in the MaxEnt and MLP models is
a conjunction between a property of the struc-
tured representation and a property of the sen-
tence. When using n-grams, we use 2 ≤ n ≤ 6.

Property-based Features Given a sentence-
representation pair, for each property listed in
Table 2, we compute if it holds for the rep-
resentation. For each property that holds and
for each n-gram in the sentence we trigger
a feature. Consider the first example in Ta-
ble 1. The features triggered for this exam-
ple include touches-wall#two-boxes-have and
touches-wall#touching-the-side computed from
the property touches-wall and the tri-grams two
boxes have and touching the side. We ob-
serve that the MaxEnt model learns a higher
weight for features which combine similar prop-
erties of the world and the sentence, such as
touches-wall#touching-the-side.

Count-based Features We identify all n-grams
in the sentence containing a numerical word type.
Numerical word types include integers (e.g. 7, 12,
zero, two), no, and a. We identify all counts listed
in Table 3 of the structured representation. For
each numerical n-gram and count, we trigger a
feature based on the relation between the numbers.
We only trigger features when the number in the

[[{"y loc": 80, "color": "Black",
"type": "square", "x loc": 40,
"size": 20}, {"y loc": 59, "color":
"Yellow", "type": "square",
"x loc": 40, "size": 20}, {"y loc":
38, "color": "#0099ff", "type":
"square", "x loc": 40, "size": 20}],
[{"y loc": 80, "color": "#0099ff",
"type": "square", "x loc": 40,
"size": 20 }, {"y loc": 59, "color":
"Yellow", "type": "square", "x loc":
40, "size": 20 }, {"y loc": 38,
"color": "Yellow", "type": "square",
"x loc": 40, "size": 20 }],
[{"y loc": 80, "color": "#0099ff",
"type": "square", "x loc": 40,
"size": 20},{"y loc": 59, "color":
"Yellow", "type": "square", "x loc":
40, "size": 20}, {"y loc": 38,
"color": "Yellow", "type": "square",
"x loc": 40, "size": 20 }]]

Figure 1: The JSON structured representation for the
last example in Table 1.

count is greater-than-or-equal or equal to the num-
ber from the numerical n-gram. In the features,
we use a generalized n-gram, where we replace
the number word with a placeholder. The feature
name uses the generalized n-gram and the rela-
tion. For example, consider the fourth example in
Table 1. There is a box that contains exactly four
objects, and the n-gram a four block tower appears
in the sentence. Therefore, we trigger the feature
in-box-count = a- -block-tower. We also trigger
the feature in-box-count ≥ a- -block-tower, be-
cause the count of 4 is greater than or equal to the
number word four.

Ablation Table 4 shows ablation development
accuracies. We ablate (a) the size of n-grams used,
(b) number relations, and (c) number templates.

2.2 Image-only Features

In the Features+RNN model, we compute features
from the structured representation independently



Image Sentence Label

t least two boxes have the same number of objects each and the
same number of object touching the side.

true

There is a box with only blue and yellow items of which there
are only yellow squares.

true

there is at least one tower with four blocks with a yellow block
at the base and a blue block below the top block

true

There is a four block tower where the base and second blocks
are the same in color.

true

There is a blue block as the base of a tower with at most three
blocks.

true

There is a box with all 3 different colors and a black triangle
touching the wall with its top.

false

There is a box with seven items and the three black items are the
same in shape.

false

There is a box with multiple items and only one item has a dif-
ferent color.

false

None of the yellow objects are touching the edge false

There is exactly one tower with a blue block at the base and
yellow block at the top

false

Table 1: Examples from the Cornell Natural Language Visual Reasoning (NLVR) corpus.1

Property name Description
Top colors For each of the three colors, whether the

topmost object(s) in a box is this color.
Bottom colors For each of the three colors, whether the

lowest object(s) in a box is this color.
Touching Whether any object is touching any

walls in any box.

Table 2: Description of properties used to generate
property-based features.

of the sentence. The features are then combined
with the RNN sentence representation.

For each object in the structured representation,
we construct a set of features using the follow-
ing properties: color, shape, size, and touching the
left, right, top, or bottom walls. We process the
objects in order and generate a unique feature for
every property and object index. We also compare
the location of each object to all other objects in
the same box and create a feature for each other
object depending if it is below, above, left, or right
to the object. The object’s representation is its set
of property features. We use the object ordering as
it appears in the JSON string. The number in each
box is bounded and there are three boxes. There-
fore, the maximum number of features is known,
and we can represent each feature as a one-hot
vector.

1Any typos in the sentences shown are directly from the
data.

3 Implementation details

In all models except MaxEnt and NMN, we use
a patience stopping procedure. We start with an
initial patience counter value of 5, and test on the
development set after every epoch. If the accuracy
improves, we reset the counter to the value it was
last assigned upon improvement multiplied by 1.1.
We decrease the counter at each epoch, and termi-
nate when the counter is below zero. For all neural
network models, except NMN, we tune the hyper-
parameters on the development set, including tun-
ing the size and number of hidden layers, the size
of embeddings, and learning rate.

MaxEnt We use Megam2 and run learning for
up to 100 iterations.

MLP We use 32-dimensional feature embed-
dings, and a hidden layer of size 32. We initialize
all learned parameters uniformly in [−0.01, 0.01].
We use ADAM with an initial learning rate of 0.01
and a mini-batch size of 128.

CNN+RNN We use an image size of 20× 80, a
CNN with three layers, each of size 32 with filter
sizes of 8× 8, 4× 4, and 2× 2 and strides of 4, 2,
and 2. The CNN output is processed with a fully
connected layer with 256 units. We use 16 dimen-
sions for word embeddings, and 128 LSTM units

2https://www.umiacs.umd.edu/˜hal/
megam/

https://www.umiacs.umd.edu/~hal/megam/
https://www.umiacs.umd.edu/~hal/megam/


Count name Description
Color-shape combinations Count of the number of objects with a certain color and shape in the

entire image (nine possible counts, from three colors and three shapes).
Color-shape combinations in a box For each box, count of the number of objects with a certain color and

shape (27 possible counts, from nine possible color/shape combina-
tions, and three boxes to count in).

All one color For each color, count of the number of boxes in the image which contain
entirely objects of that color only (three possible counts; one for each
color).

Objects in box For each box, count of the number of items in the box (three possible
counts; one for each box).

Color-shape combination touching the
wall

Count of the number of objects with a certain color and shape combi-
nation in the image which are touching any wall (nine possible counts,
from three colors and three shapes).

Color-shape combination touching the
wall in a box

For each box, count of the number of objects with a certain color and
shape that are touching the wall (27 possible counts, from nine possible
color/shape combinations, and three boxes to count in).

Total number touching Count of the number of objects touching any wall in the image.

Table 3: Description of counts used to generate count-based features.

Feature Configuration Accuracy
n-gram length
2 ≤ n ≤ 5 65.82
2 ≤ n ≤ 4 65.22
2 ≤ n ≤ 3 63.20
Counting Relations
w/o greater-than-or-equal relation 67.13
w/o equality relation 60.87
w/o count-based features 57.53
w/o property-based features 66.45

Table 4: Development accuracies for ablation of image
and sentence features (Section 2.1).

in the RNN. We concatenate the sentence embed-
ding with the image embedding and pass through
a fully connected layer of size 128 with ReLu non-
linearity. We then perform a linear-transformation
and a softmax. We initialize learned parameters
uniformly in [−0.01, 0.01]. We use ADAM with
an initial learning rate of 0.001 and a mini-batch
size of 128.

Image Features+RNN We use the same RNN
architecture as in CNN+RNN. We use the concate-
nation of the one-hot image features as described
in Section 2.2 to compute the image embeddings
with two layers of size 32. We concatenate the im-
age and sentence embeddings, pass through a fully
connected layer of size 32, and then apply a soft-
max. We initialize learned parameters uniformly
in [−0.01, 0.01]. We use ADAM with an initial
learning rate of 0.0075 and a mini-batch size of
128.

NMN We use the public implementation.3 We
tune the maximum leaves parameter to 5. We

3https://github.com/jacobandreas/nmn2

also preprocess our sentences using several sim-
ple rules (e.g. transpose “there are” to “are there”)
to construct questions out of our statements. We
run learning for 100 epochs, and observe the per-
formance on all sets at the epoch with the highest
development performance.
Text and Image Only We use the RNN and
CNN architectures described above, using the
same hyperparameter settings.

https://github.com/jacobandreas/nmn2

