# Semi-supervised Multitask Learning for Sequence Labeling Marek Rei University of Cambridge

## **Sequence Labeling**

### Language Modeling Objective

#### The task:

Given a sequence of tokens, predict a label for every token.

#### Named Entity Recognition:

PER ORG ORG \_\_\_\_TIME \_\_ Jim bought 300 shares of Acme Corp. in 2006.

#### **POS-tagging:**

DT NN VBD DT NN NNS IN The pound extended losses against the dollar .

- The forward-moving LSTM predicts the **next word** in the sequence.
- The backwards-moving LSTM predicts the **previous word** in the sequence.
- Both LSTMs predict the **target label**.



**Error Detection:** 

+ +

I like to playing the guitar and sing louder .

### Neural Sequence Labeling



- Sequence of tokens mapped to word embeddings.
- **Bidirectional LSTM** builds context-dependent representations for each word.
- A small **feedforward layer**

encourages generalisation.

• **Conditional Random Field** (CRF) at the top outputs the most optimal label sequence for the sentence.

• The log-likelihood loss for both language models is added to the training objective:

$$\widetilde{E} = E + \gamma (\overrightarrow{E} + \overleftarrow{E})$$
  
$$\overrightarrow{E} = -\sum_{t=1}^{T-1} \log(P(w_{t+1} | \overrightarrow{m_t})) \qquad \overleftarrow{E} = -\sum_{t=2}^{T} \log(P(w_{t-1} | \overleftarrow{m_t}))$$

### Analysis

Visualising



• Using **character-based** dynamic embeddings (Rei et al., 2016) to capture morphological patterns and unseen words.

# Multitask Learning

- Sequence labeling datasets can be **very sparse**: only 17% of tokens in CoNLL-03 are a named entity.
- We want an **additional objective** that makes full use of the data to learn features for semantic composition.
- Language modeling 1) requires no extra annotation, 2) has a large number of possible targets for each position.



- The network predicts the **next word** together with the main label.

- convergence on the FCE development set after each training epoch.
- LM objective improves performance at **all** stages of training.
- Additional **parameter matrices** are required for the two language models during training.
- However, the LM components are **not needed during testing**.
- The resulting model has the same structure and **the same number** of parameters as the baseline.

### Conclusion

• Integrated a **language modeling objective** into a neural sequence labeling architecture.

• Cannot simply add it as an extra output layer – the next word is **already** given as input to the nextwork.

- Requires **no additional data** and the trained model has no additional parameters.
- Provides **consistent improvements** on 10 different datasets.
- The **source code**: https://github.com/marekrei/sequence-labeler Results

• Experiments on 10 different datasets and 4 different tasks: error detection, named entity recognition, chunking, and POS tagging.

|           | FCE   |              | CoNLL-14 |       | CoNLL-03       |       | CHEMDNER |       | CoNLL-00       |       | PTB-POS |       | UD-ES |       | $\mathbf{UD}\text{-}\mathbf{FI}$ |       |
|-----------|-------|--------------|----------|-------|----------------|-------|----------|-------|----------------|-------|---------|-------|-------|-------|----------------------------------|-------|
|           | DEV   | TEST         | TEST1    | TEST2 | $\mathbf{DEV}$ | TEST  | DEV      | TEST  | $\mathbf{DEV}$ | TEST  | DEV     | TEST  | DEV   | TEST  | DEV                              | TEST  |
| Baseline  | 48.78 | 44.56        | 15.80    | 23.62 | 90.85          | 85.63 | 83.63    | 84.51 | 92.92          | 92.67 | 97.23   | 97.24 | 96.38 | 95.99 | 95.02                            | 94.80 |
| + dropout | 48.68 | 42.65        | 14.71    | 21.91 | 91.14          | 86.00 | 84.78    | 85.67 | 93.40          | 93.15 | 97.36   | 97.30 | 96.51 | 96.16 | 95.88                            | 95.60 |
| + LMcost  | 53.17 | <b>48.48</b> | 17.86    | 25.88 | 91.48          | 86.26 | 85.45    | 86.27 | 94.22          | 93.88 | 97.48   | 97.43 | 96.62 | 96.21 | 96.14                            | 95.88 |