

Skolkovo Institute of Science and Technology

<u>Alexander Fonarev^{1,2,4}, Oleksii Hrinchuk^{1,2,3}, Gleb Gusev^{2,3}, Pavel Serdyukov², Ivan Oseledets^{1,5}</u> ¹Skolkovo Institute of Science and Technology, ²Yandex LLC, ³Moscow Institute of Physics and Technology, ⁴SBDA Group, ⁵Institute of Numerical Mathematics RAS

1. PROBLEM

Training Skip-Gram Negative Sampling (SGNS) word embedding model ("word2vec") to measure the semantic similarity between them can be reformulated as a two-step procedure:

- **Step 1.** Search for a low-rank matrix X that provides a good SGNS objective value;
- Step 2. Search for a good low-rank representation $X = WC^{\top}$ in terms of linguistic metrics, where W is a matrix of word embeddings and *C* is a matrix of context embeddings.

3. BACKGROUND

SGNS as Implicit Matrix Factorization [2]

$$X = WC^T = (x_{wc}), \ x_{wc} = \langle \mathbf{w}, \mathbf{c} \rangle$$
$$\mathcal{M}_d = \{ X \in \mathbb{R}^{n \times m} : \operatorname{rank}(X) = d \}$$

$$F(X) = \sum_{w \in V_W} \sum_{c \in V_C} (\#(w, c)(\log \sigma(x_{wc}) + k\frac{\#(w)\#(c)}{|D|} \log \sigma(-x_{wc}))) \rightarrow \max_{X \in \mathcal{M}_d}$$

Riemannian Optimization

- Projection of the gradient ascent step onto the tangent space: $X_{i+1} = X_i + \mathcal{P}_{\mathcal{T}_{X_i}\mathcal{M}_d}\nabla F(X_i)$
- 2. Retraction back to the manifold: $X_{i+1} = R(\hat{X}_{i+1}) \in \mathcal{M}_d$

Figure 1: Geometric interpretation of one step of RO.

Riemannian Optimization for Skip-Gram Negative Sampling

SOURCE CODE

- Python implementation of RO-SGNS
- templates of basic experiments
- semantic similarity datasets

https://github.com/AlexGrinch/ro_sgns

Dim. d	Algorithm	ws-sim	ws-rel	ws-full	simlex	men
d = 100	SGD-SGNS	0.719	0.570	0.662	0.288	0.645
	SVD-SPPMI	0.722	0.585	0.669	0.317	0.686
	RO-SGNS	0.729	0.597	0.677	0.322	0.683
d = 200	SGD-SGNS	0.733	0.584	0.677	0.317	0.664
	SVD-SPPMI	0.747	0.625	0.694	0.347	0.710
	RO-SGNS	0.757	0.647	0.708	0.353	0.701
d = 500	SGD-SGNS	0.738	0.600	0.688	0.350	0.712
	SVD-SPPMI	0.765	0.639	0.707	0.380	0.737
	RO-SGNS	0.767	0.654	0.715	0.383	0.732

Table 1: Spearman's correlation between predicted similarities and the manually assessed ones.

usa									
SGD-SGN	S	SVD-SPF	PMI	RO-SGNS					
Neighbors	Dist.	Neighbors	Dist.	Neighbors	Dist.				
akron	0.536	wisconsin	0.700	georgia	0.707				
midwest	0.535	delaware	0.693	delaware	0.706				
burbank	0.534	ohio	0.691	maryland	0.705				
nevada	0.534	northeast	0.690	illinois	0.704				
arizona	0.533	cities	0.688	madison	0.703				
uk	0.532	southwest	0.684	arkansas	0.699				
youngstown	0.532	places	0.684	dakota	0.690				
utah	0.530	counties	0.681	tennessee	0.689				
milwaukee	0.530	maryland	0.680	northeast	0.687				
headquartered	0.527	dakota	0.674	nebraska	0.686				

FUTURE WORK

• Apply more advanced optimization techniques to the Step 1 of the proposed scheme.

• Explore the Step 2 of obtaining embeddings with a given low-rank matrix.

Table 2: Examples of the semantic neighbors for "usa".

• The best results were obtained when SVD-SPPMI was used as initialization.

• We need to stop optimization procedure on some iteration to get better model.

• Optimal value of *K* appeared to be the same for both test and its 10-fold cross-validation.

REFERENCES

Alexander Fonarev, Oleksii Hrinchuk et al. Riemannian optimization for Skip-Gram Negative Sampling. In ACL 2017. [2] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In NIPS 2014.

[3] Christian Lubich and Ivan Oseledets. A projector-splitting integrator for dynamical low-rank approximation. In BIT Numerical Mathematics 2014.