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Overview Experiments

e [ask input: Separate monolingual embeddings trained on non-parallel data Chinese-English

e [ask output: A bilingual lexicon
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e Challenge: Zero supervision: Can we link separate monolingual embeddings
without any cross-lingual signal?
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e Solution: Formulate as an adversarial game

e Outcome: Successful learning with proper model design and training tech- ™
niques
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Although monolingual word embeddings are trained separately on non-parallel
data, they appear approximately isomorphic. Therefore a linear transtformation
can be used to align the two embedding spaces. But previous works typically
require seed word translation pairs to supervise its learning.
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Spanish-English, Italian-English, Japanese-Chinese, Turkish-English

method # seeds || es-en | 1t-en | ja-zh | tr-en
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Large-scale settings
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(a) Model 1 (unidirectional transtormation): The generator G is a linear trans- 0 7.92
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formation that tries to transform source word embeddings (squares) to make
them seem like target ones (dots), while the discriminator D tries to classify
whether the input embeddings are generated by G or real samples from the
target embedding distribution.

(b) Model 2 (bidirectional transtormation): It (G transforms the source word em-
bedding space into the target language space, its transpose G' should trans-
form the target lanquage space back to the source.

(c) Model 3 (adversarial autoencoder): After the generator G transforms a
source word embedding x into a target language representation Gx, we should
be able to reconstruct the source word embedding x by mapping back with G'.

e Model 2 and 3 can be seen as relaxations of an orthogonal constraint on G.

Training Techniques

Regularizing the discriminator
e All forms of reqularization help training.

e Multiplicative Gaussian injected into the input is the most effective. On top
of that, hidden layer noise helps slightly.

Model selection
e Sharp drops of the generator loss correspond to good models.

e Reconstruction loss Lr and the value of ‘ G'G— IHF drop synchronously —
Cood models are indeed close to orthogonality.

Conclusion

e Feasible to connect the word embeddings of different languages without any

cross-lingual signal

e Comparable performance with methods that require seeds to train

e Code available at http://thunlp.org/~zm/UBiLexAT/




