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Bandit Structured Prediction

Algorithm 1 Bandit Structured Prediction

Input: Sequence of learning rates ;.

A

Output: Optimal parameters ¢

Initialize parameters 6,

for £=0,..., K do

Observe input structure xj

Sample output structure ¥ ~ py(y|xs)
Obtain feedback A(¥r)

Compute stochastic gradient sy

Update parameters 0.1 = 0 — Vi sk

Choose a solution § from the list {6y, . ... 0x}

Objectives

Expected Loss (EL):

Expectation of a task loss A(y) over all input
and output structures:

LEL(Q) — 4:p(y:)pe(f’lx) [A(S})] '
Stochastic gradient:

_Olo VIx
PRI

Output structures y are sampled word by
word from the distribution resulting from the
softmax transformation in the output layer of

the network.

m Pairwise Preference Ranking (PR):

Transfer EL to pairs of structures (¥;,¥;):

LPR(Q) — <E]U(X)109(<}~’z'5’j>|X) [A(<S}Z7 y]>)] '
Stochastic gradient:
sp =056, ¥5))
. (9log po(¥ilx)
00

00

Learn to rank ¥; over ¥; with pairwise
feedback, either continuous (cont)

Ay y;)) = Alyy) — Alyi),
or binary (bin)

L if Alyy) > Alyi),

0 otherwise.

Alyiy;)) =

Draw negative sample y; from distribution
Py, one word per output structure (chosen
randomly):

eXp<_0w]‘)

21‘1/21 GXP(_OwU) |

pe_@t — wj‘Xa y<t) =

0log py (S’j\Xk))
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Bandit Seq2Seq

Bandit structured prediction [1] is a stochastic
optimization framework where learning is per-
formed from partial feedback. This feedback
is received in the form of task loss evaluation
of a predicted output structure, without having
access to gold standard structures.

In this work, we advance the framework by

» lifting linear bandits to neural seq2seq
learning using attention-based RNNs, and

» incorporating control variates for variance
reduction and improved generalization.

Experiments for neural machine translation
show large improvements for domain adapta-
tion from simulated bandit feedback.

Control Variates

Augment a random variable X (here: X = s;)
by another random variable Y, the control vari-
ate. With Y = E[Y], X —¢Y + &Y is an unbi-
ased estimator of [E| X'|. Control variates with high
Cov(X,Y') reduce the variance of the gradient
estimate. Two choices here:

m Score Function (SF) [3]:
Y, = Vlog ps(¥|xz).

Experiments

Neural machine translation domain adaptation:

» Adapt a pre-trained model (Europarl, fr-en) to
new domains (News Commentary and TED).

» Simulated feedback with GLEU on references
» Encoder-decoder architecture with attention

» Full-information baselines: maximum likelihood
estimation on reference translations

Strategies for handling of unknown words:

m attention-based replacement of UNKs for
word-based models [4

@ sub-word models with Byte-Pair-Encoding
(BPE) [5]
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Results

BLEU on held-out in- and out-of-domain test sets
for parameters f selected by early stopping on a
validation set.

We seek models for conservative domain
adaptation, that learn to improve on in-domain,
but maintain quality on out-of-domain transla-
tions.

Domain Adaptation with Weak Feedback: EP to NC
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Findings

» Successful training of NMT with weak feedback

» Large improvements for domain adaptation,
outperforming linear models

» Control variates improve generalization, see [6]
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