
1

A Transition-Based Directed Acyclic Graph Parser
for Universal Conceptual Cognitive Annotation

Daniel Hershcovich, Omri Abend and Ari Rappoport

ACL 2017



2

TUPA — Transition-based UCCA Parser
The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text

2. Reentrancy — allow argument sharing
3. Discontinuity — conceptual units are split

— needed for many semantic schemes (e.g. AMR, UCCA).
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Introduction
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Linguistic Structure Annotation Schemes

• Syntactic dependencies

• Semantic dependencies (Oepen et al., 2016)

Syntactic (UD)
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Linguistic Structure Annotation Schemes

• Syntactic dependencies

• Semantic dependencies (Oepen et al., 2016)

• Semantic role labeling (PropBank, FrameNet)

• AMR (Banarescu et al., 2013)

• UCCA (Abend and Rappoport, 2013)

• Other semantic representation schemes1

Semantic representation schemes attempt to abstract away from
syntactic detail that does not affect meaning:

. . . bathed = . . . took a bath

1See recent survey (Abend and Rappoport, 2017)
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The UCCA Semantic Representation Scheme
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Universal Conceptual Cognitive Annotation (UCCA)
Cross-linguistically applicable (Abend and Rappoport, 2013).
Stable in translation (Sulem et al., 2015).

English

Hebrew



10

Universal Conceptual Cognitive Annotation (UCCA)
Rapid and intuitive annotation interface (Abend et al., 2017).
Usable by non-experts. ucca-demo.cs.huji.ac.il

Facilitates semantics-based human evaluation of machine
translation (Birch et al., 2016). ucca.cs.huji.ac.il/mteval

ucca-demo.cs.huji.ac.il
ucca.cs.huji.ac.il/mteval


11

Graph Structure
UCCA generates a directed acyclic graph (DAG).
Text tokens are terminals, complex units are non-terminal nodes.
Remote edges enable reentrancy for argument sharing.
Phrases may be discontinuous (e.g., multi-word expressions).
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Transition-based UCCA Parsing
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Transition-Based Parsing
First used for dependency parsing (Nivre, 2004).
Parse text w1 . . . wn to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

You want to take a long bath

TUPA transitions:
{Shift, Reduce, NodeX , Left-EdgeX , Right-EdgeX ,

Left-RemoteX , Right-RemoteX , Swap, Finish}

Support non-terminal nodes, reentrancy and discontinuity.
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Example
⇒ Shift

stack
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Example
⇒ Right-EdgeA

stack

You

buffer

want to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D



18

Example
⇒ Shift

stack

You want

buffer

to take a long bath

graph

You

A

want

P

to

F

take

C

a

F

long bath

C

P

A

A

D



19

Example
⇒ Swap
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Example
⇒ Right-EdgeP
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Example
⇒ Reduce

stack buffer

to take a long bath
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Example
⇒ NodeF
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Example
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Example
⇒ Finish
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Training
An oracle provides the transition sequence given the correct graph:

You
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Shift, Right-EdgeA, Shift, Swap, Right-EdgeP , Reduce, Shift,
Shift, NodeF , Reduce, Shift, Shift, NodeC , Reduce, Shift,
Right-EdgeP , Shift, Right-EdgeF , Reduce, Shift, Swap,
Right-EdgeD , Reduce, Swap, Right-EdgeA, Reduce, Reduce, Shift,
Shift, Left-RemoteA, Shift, Right-EdgeC , Finish
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TUPA Model
Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).
MLP Embeddings + feedforward NN (Chen and Manning, 2014).
BiLSTM Embeddings + deep bidirectional LSTM + MLP

(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer + parents, children, grandchildren;
ordinal features (height, number of parents and children)
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Experiments
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Experimental Setup

• UCCA Wikipedia corpus (
train
4268 +

dev
454 +

test
503 sentences).

• Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).
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Baselines
No existing UCCA parsers ⇒ conversion-based approximation.
Bilexical DAG parsers (allow reentrancy):

• DAGParser (Ribeyre et al., 2014): transition-based.
• TurboParser (Almeida and Martins, 2015): graph-based.

Tree parsers (all transition-based):
• MaltParser (Nivre et al., 2007): bilexical tree parser.
• Stack LSTM Parser (Dyer et al., 2015): bilexical tree parser.
• uparse (Maier, 2015): allows non-terminals, discontinuity.

You want to take a long bath
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F F
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UCCA bilexical DAG approximation (for tree, delete remote edges).
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Bilexical Graph Approximation

1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.
3. Reconstruct UCCA graphs and compare with gold standard.
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Evaluation
Comparing graphs over the same sequence of tokens,

• Match edges by their terminal yield and label.
• Calculate labeled precision, recall and F1 scores.
• Separate primary and remote edges.

gold
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Results
TUPABiLSTM obtains the highest F-scores in all metrics:

Primary edges Remote edges
LP LR LF LP LR LF

TUPASparse 64.5 63.7 64.1 19.8 13.4 16
TUPAMLP 65.2 64.6 64.9 23.7 13.2 16.9
TUPABiLSTM 74.4 72.7 73.5 47.4 51.6 49.4
Bilexical DAG (91) (58.3)
DAGParser 61.8 55.8 58.6 9.5 0.5 1
TurboParser 57.7 46 51.2 77.8 1.8 3.7
Bilexical tree (91) –
MaltParser 62.8 57.7 60.2 – – –
Stack LSTM 73.2 66.9 69.9 – – –
Tree (100) –
uparse 60.9 61.2 61.1 – – –

Results on the Wiki test set.
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Results
Comparable on out-of-domain test set:

Primary edges Remote edges
LP LR LF LP LR LF

TUPASparse 59.6 59.9 59.8 22.2 7.7 11.5
TUPAMLP 62.3 62.6 62.5 20.9 6.3 9.7
TUPABiLSTM 68.7 68.5 68.6 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 53.4 – 0 0
TurboParser 50.3 37.7 43.1 100 0.4 0.8
Bilexical tree (91.3) –
MaltParser 57.8 53 55.3 – – –
Stack LSTM 66.1 61.1 63.5 – – –
Tree (100) –
uparse 52.7 52.8 52.8 – – –

Results on the 20K Leagues out-of-domain set.
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Conclusion

• UCCA’s semantic distinctions require a graph structure
including non-terminals, reentrancy and discontinuity.

• TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

• Outperforms strong conversion-based baselines.

Future Work:
• More languages (German corpus construction is underway).
• Parsing other schemes, such as AMR.
• Compare semantic representations through conversion.
• Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/˜oabend/ucca.html

Thank you!

github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html
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UCCA Corpora
Wiki 20K

Train Dev Test Leagues
# passages 300 34 33 154
# sentences 4268 454 503 506
# nodes 298,993 33,704 35,718 29,315
% terminal 42.96 43.54 42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03
# edges 287,914 32,460 34,336 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
# children 1.67 1.68 1.66 1.61

Corpus statistics.
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Evaluation
Mutual edges between predicted graph Gp = (Vp, Ep, `p) and gold
graph Gg = (Vg , Eg , `g), both over terminals W = {w1, . . . , wn}:

M(Gp, Gg) =
{

(e1, e2) ∈ Ep×Eg
∣∣∣ y(e1) = y(e2)∧`p(e1) = `g(e2)

}
The yield y(e) ⊆ W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v . ` is the edge label.

Labeled precision, recall and F-score are then defined as:

LP = |M(Gp, Gg)|
|Ep|

, LR = |M(Gp, Gg)|
|Eg |

,

LF = 2 · LP · LR
LP + LR .

Two variants: one for primary edges, and another for remote edges.
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