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TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:

1. Non-terminal nodes — entities and events over the text

take a long bath

N



TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:
1. Non-terminal nodes — entities and events over the text

2. — allow argument sharing
You want
to

take a long bath



TUPA — Transition-based UCCA Parser

The first parser to support the combination of three properties:
1. Non-terminal nodes — entities and events over the text
2. — allow argument sharing
3. Discontinuity — conceptual units are split

— needed for many semantic schemes (e.g. AMR, UCCA).

|
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Introduction



Linguistic Structure Annotation Schemes
e Syntactic dependencies

e Semantic dependencies (Oepen et al., 2016)

Syntactic (UD)

dobj

want to take a long bath

ML@J

ARGl

Semantic (DM)

Bilexical dependencies.



Linguistic Structure Annotation Schemes

Syntactic dependencies

Semantic dependencies (Oepen et al., 2016)
¢ Semantic role labeling (PropBank, FrameNet)
¢ AMR (Banarescu et al., 2013)

e UCCA (Abend and Rappoport, 2013)

e Other semantic representation schemes!

Semantic representation schemes attempt to abstract away from
syntactic detail that does not affect meaning:

‘...bathed‘:‘...tookabath‘

!See recent survey (Abend and Rappoport, 2017)



The UCCA Semantic Representation Scheme



Universal Conceptual Cognitive Annotation (UCCA)

Cross-linguistically applicable (Abend and Rappoport, 2013).
Stable in translation (Sulem et al., 2015).

English ~ __— B ggs

IBM happened to choose a company with a crucial vulnerability , despite vetting .

/zeg/%//a/%\

IBM chose in-mistake with-company very vulnerable despite that-checked it beforehand
n'ay» NNna. myv-a 11an-a TIND nymna mnbd npTa-v nmn YUNIN

IBM baxra  be-ta’ut ba-xevra ma’od pgi‘a lamrot $o-badka ota mero$
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Universal Conceptual Cognitive Annotation (UCCA)

Rapid and intuitive annotation interface (Abend et al., 2017).
Usable by non-experts. ucca-demo.cs.huji.ac.il

Facilitates semantics-based human evaluation of machine
translation (Birch et al., 2016). ucca.cs.huji.ac.il/mteval

Linker (1) i |william Bradley Pitt was born in Shawnee , Oklahoma| , to William Alvin Pitt , who ran a trucking company , and Jane Etta ( née Hillhouse ), a
= school counsellor . The family soon moved to Springfield , Missouri , where he lived together with his younger siblings , Douglas ( born 1966 ) and
Ground (G) 1 Julie Neal ( born 1969 ). Born into a conservative household , he was raised as Southern Baptist , but has since stated flat he does not * have a

Participant (A) great relationship with religion * and that he * oscillates between agnosticism and atheism " Pitt has described Springfield as * Mark Twain country

. , Jesse James country ", having grown up with * a lot of hills , a lot of lakes *
State (S) 1

Process (P) i B @ “

Adverbial (D) |

Time (T) i
Elaborator (E) i
Connector (N) i 8

Relator R) i [“‘” Rliin —
Uncertain (UNC) i ‘ UNA

Unanalyzable (Ul i

Function (F) 1



ucca-demo.cs.huji.ac.il
ucca.cs.huji.ac.il/mteval
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Graph Structure

UCCA generates a directed acyclic graph (DAG).

Text tokens are terminals, complex units are non-terminal nodes.
Remote edges enable for argument sharing.

Phrases may be discontinuous (e.g., multi-word expressions).

—— primary edge

- - - remote edge

You want

P process

A participant

C center take a long bath
D  adverbial

F function You want to take a long bath




Transition-based UCCA Parsing
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Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying
transitions to the parser state: stack, buffer and constructed graph.
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Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying

transitions to the parser state: stack, buffer and constructed graph.

Initial state:

stack buffer

E ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘
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Transition-Based Parsing

First used for dependency parsing (Nivre, 2004).
Parse text wy ... w, to graph G incrementally by applying

transitions to the parser state: stack, buffer and constructed graph.

Initial state:
stack buffer
E ‘ You ‘ Want‘ to ‘ take ‘ a ‘ long‘ bath‘

TUPA transitions:
{SHIFT, REDUCE, NODEY, LEFT-EDGExX, RIGHT-EDGEX,
LEFT-REMOTEx, RIGHT-REMOTEY, SWAP, FINISH}

Support non-terminal nodes, and discontinuity.

15



Example

= SHIFT

stack

@ [vor]

buffer

WWant‘to

‘take ‘a

\ long \ bath \

graph
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Example

= RIGHT-EDGE,h

stack

| @ |You

buffer

WWant‘to

‘take ‘a

\ long \ bath \

graph /

You
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Example

= SHIFT

stack

‘ o WYbu |\Nant|

buffer

‘to

‘take ‘a

\ long \ bath \

graph /'

You
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Example

= SWAP

stack

@ ]

buffer

|Ybu |to

‘take ‘a

\ long \ bath \

graph /'

You

19



Example

= RIGHT-EDGEp

stack

@ [vant

buffer

‘You ’to

‘take ‘a

‘ long ‘ bath ‘

graph
P

You want
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Example

= REDUCE
stack buffer
@ ‘ to ‘ take ‘ a ‘ long ‘ bath ‘

graph
P

You want
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Example

= SHIFT

stack buffer

@ [vor] to Juake [a_[long [bath |

graph
P

You want




Example

= SHIFT
stack buffer
‘ () ‘ You | to | ‘ take ‘ a ‘ long ‘ bath ‘

graph
P

You want
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Example

= NODEf
stack buffer
‘ () ‘ You ‘ to ‘ | o | take ‘ a ‘ long ‘ bath ‘

graph
//PT
You want
/

to
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Example

= REDUCE

stack buffer

@ vou @ [uake o [fons [buth |

graph
//PT
You want
/

to




Example

= SHIFT

stack

@ vu[@®]

buffer

‘take ‘a

\ long \ bath \

graph
//PT
You want
/

to
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Example

= SHIFT

stack

‘ () ‘You ‘ o |take|

buffer

a

\ long \ bath \

graph
//PT
You want
/

to
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Example

= NODE¢

stack

‘ () ‘You ‘ o ‘take‘

buffer

K HE

\ long \ bath \

graph
P

take

You want
F

to
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Example

= REDUCE

stack

@ You | @

buffer

@ |»

\ long \ bath \

graph
P

take

You want
F

to
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Example

= SHIFT

stack

@ Yu @[ @]

buffer

a

\ long \ bath \

graph
//PT
You want
/

to

take
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Example

= RIGHT-EDGEp

stack

@ vu [0 @]

buffer

a

\ long \ bath \

graph
//PT
You want
/\

to

C

take
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Example

= SHIFT

stack

@ Yu @ @ |0

buffer

graph

You

take




Example

= RIGHT-EDGEF

stack

@ Yu @[ @ |n

buffer

graph

You

take
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Example

= REDUCE
stack buffer
@ Yu @ @
graph
p
You want

take
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Example

= SHIFT

stack

‘.‘You‘.‘.|long|

buffer

graph

You

take
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Example

= SWAP
stack buffer
@ vou | @ g (@ Jbutt
graph
P
You want

take
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Example

= RIGHT-EDGEp

stack buffer
@ [vou [@ [ione] @ [buth]
graph
P
You want

take
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Example

= REDUCE
stack buffer
@ [Yu @ @ [bath
graph

P

You want
D
to
take long
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Example

= SWAP
stack buffer
AR [ou] @ Dot
graph
P
You

take

long
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Example

= RIGHT-EDGE,h

stack buffer
eTe] Vou | @ Thaih
graph
P
You

take

long
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Example

= REDUCE
stack buffer
o You | @ Toatn
graph
P A
You want
D
to
take long
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Example

= REDUCE

stack

H

buffer

‘You ‘ o ‘bath‘

graph

You

take

long




Example

= SHIFT
stack buffer
You @ |bath
graph
P
You

take

long
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Example

= SHIFT
stack buffer
You [@
graph
P
You

take

long
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Example

= LEFT-REMOTE4

stack buffer
o[ @
graph
P
You want
K

take
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Example

= SHIFT

stack

‘You ‘ o |bath|

buffer

H

graph

take
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Example

= RIGHT-EDGE(¢

stack

‘You | o |bath|

buffer

graph

take

long

bath

H
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Example

= FINISH

stack

‘You ‘ o ‘bath‘

buffer

H

graph

bath
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Training

An oracle provides the transition sequence given the correct graph:

take a long bath

SHIFT, RIGHT-EDGE,, SHIFT, SWAP, RIGHT-EDGEp, REDUCE, SHIFT,
SHIFT, NODEF, REDUCE, SHIFT, SHIFT, NODE¢, REDUCE, SHIFT,
RIGHT-EDGEp, SHIFT, RIGHT-EDGEF, REDUCE, SHIFT, SWAP,
RIGHT-EDGEp, REDUCE, SWAP, RIGHT-EDGE4s, REDUCE, REDUCE, SHIFT,
SHIFT, LEFT-REMOTE4, SHIFT, RIGHT-EDGE¢, FINISH

49
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Features: words, POS, syntactic dependencies, existing edge labels
from the stack and buffer 4 parents, children, grandchildren;
ordinal features (height, number of parents and children)

stack buffer
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

Effective “lookahead” encoded in the representation.

You want to take long bath



TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

You want to take long bath
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

LSTM LST™M LST™M LSTM LSTM LST™M

BInE w

You want to take long bath
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TUPA Model

Learn to greedily predict transition based on current state.
Experimenting with three classifiers:

Sparse Perceptron with sparse features (Zhang and Nivre, 2011).

MLP Embeddings + feedforward NN (Chen and Manning, 2014).

BiLSTM Embeddings + deep bidirectional LSTM + MLP
(Kiperwasser and Goldberg, 2016).

want to tak



h
stack‘ o ‘You ‘ o ‘take‘ %? 5

You want f
F
to
buffer ‘ o ‘ a ‘ long ‘ bath ‘ /.

You want to take a long




Experiments
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Experimental Setup

train

dev
e UCCA Wikipedia corpus (4268 + 4§4 + 503 sentences).

test

e Out-of-domain: English part of English-French parallel corpus,
Twenty Thousand Leagues Under the Sea (506 sentences).

57
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Baselines

No existing UCCA parsers = conversion-based approximation.
Bilexical DAG parsers (allow ):

e DAGParser (Ribeyre et al., 2014): transition-based.

e TurboParser (Almeida and Martins, 2015): graph-based.
Tree parsers (all transition-based):

e MaltParser (Nivre et al., 2007): bilexical tree parser.

e Stack LSTM Parser (Dyer et al., 2015): bilexical tree parser.

® UPARSE (Maier, 2015): allows non-terminals, discontinuity.

You e a long bath

UCCA bilexical DAG approximation (for tree, delete remote edges).



Bilexical Graph Approximation

1. Convert UCCA to bilexical dependencies.
2. Train bilexical parsers and apply to test sentences.
3. Reconstruct UCCA graphs and compare with gold standard.

0 \J
After () J
T N

M

graduation  Joe moved
R C
o . L \ m Paris

After graduation moved to Paris

59



Evaluation

Comparing graphs over the same sequence of tokens,
e Match edges by their terminal yield and label.
e Calculate labeled precision, recall and F1 scores.

e Separate primary and remote edges.

gold predicted

.
graduation
i

~

Joe

briar. _ LP LR LF Remote: . LP LR LF
MY TE_671% & = 60% 64% T 1=50% 1=100% 67%




Results

61

TUPARg;LsTMm obtains the highest F-scores in all metrics:

Primary edges

Remote edges

LP LR LF LP LR LF
TUPAsparse 64.5 63.7 64.1 | 198 134 16
TUPAMLP 65.2 646 649 | 237 132 169
TUPAgiLsTm | 74.4 727 73.5 | 474 516 49.4
Bilexical DAG (91) (58.3)
DAGParser 61.8 558 5386 | 95 0.5 1
TurboParser | 57.7 46 51.2 | 77.8 1.8 3.7
Bilexical tree (91) -
MaltParser 62.8 57.7 60.2 - - -
Stack LSTM | 73.2 66.9 69.9 - - -
Tree (100) -
UPARSE 60.9 61.2 61.1 - - -

Results on the Wiki test set.



Results

Comparable on out-of-domain test set:

Primary edges

62

Remote edges

LP LR LF LP LR LF
TUPAsparse 506 59.9 598 | 222 7.7 115
TUPAMLP 62.3 626 625|209 6.3 9.7
TUPAgiLsTtm | 68.7 68.5 68.6 | 38.6 18.8 25.3
Bilexical DAG (91.3) (43.4)
DAGParser 56.4 50.6 534 - 0 0
TurboParser | 50.3 37.7 43.1 | 100 0.4 0.8
Bilexical tree (91.3) -
MaltParser 57.8 53 553 - - -
Stack LSTM | 66.1 61.1 63.5 - - -
Tree (100) -
UPARSE 52.7 52.8 52.8 - - -

Results on the 20K Leagues out-of-domain set.



Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html
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github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html

Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.
Future Work:

More languages (German corpus construction is underway).

Parsing other schemes, such as AMR.
e Compare semantic representations through conversion.
Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html
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github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html
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Conclusion

e UCCA's semantic distinctions require a graph structure
including non-terminals, and discontinuity.

e TUPA is an accurate transition-based UCCA parser, and the
first to support UCCA and any DAG over the text tokens.

e Qutperforms strong conversion-based baselines.
Future Work:

More languages (German corpus construction is underway).

Parsing other schemes, such as AMR.
e Compare semantic representations through conversion.
Text simplification, MT evaluation and other applications.

Code: github.com/danielhers/tupa
Demo: bit.ly/tupademo
Corpora: cs.huji.ac.il/~oabend/ucca.html

Thank you!


github.com/danielhers/tupa
bit.ly/tupademo
cs.huji.ac.il/~oabend/ucca.html
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UCCA Corpora

Wiki 20K
Train Dev Test Leagues
# passages 300 34 33 154
# sentences 4268 454 503 506
# nodes 298,993 33,704 35,718 | 29,315
% terminal 42.96 43.54  42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant | 2.38 1.88 2.15 2.03
# edges 287,914 32,460 34,336 | 27,749
% primary 08.25 08.75  98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
# children 1.67 1.68 1.66 1.61

Corpus statistics.
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Evaluation

Mutual edges between predicted graph G, = (Vp, Ep, £,) and gold
graph Gg = (Vg, Eg,{g), both over terminals W = {w,..., w,}:

M(Gp. Gg) = {(e1,e2) € EpxEg | y(er) = y(e2)Alpler) = lg(e2) |

The yield y(e) C W of an edge e = (u, v) in either graph is the set
of terminals in W that are descendants of v. /7 is the edge label.

Labeled precision, recall and F-score are then defined as:

L Mo Gl MGy Gp)l
|Epl | Eg|
2.LP-LR
F=Tri R

Two variants: one for primary edges, and another for remote edges.
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