
A Proofs

Proof of Proposition 1 We know that

U(z, xb) := argmax
u

∑
xa

p(xa|xb, z)r(xa, xb, z)

and that for all translations (z, z′ = t(r))

D ≥
∑
xb

p(xb|z, z′)DKL(β(z, xb) || β(z′, xb)) .

Applying Pinsker’s inequality:

≥ 2
∑
xb

p(xb|z, z′)δ(β(z, xb), β(z′, xb))2

and Jensen’s inequality:

≥ 2

(∑
xb

p(xb|z, z′)δ(β(z, xb), β(z′, xb)))
)2

so √
D/2 ≥

∑
xb

p(xb|z, z′)δ(β(z, xb), β(z′, xb)) .

The next step relies on the following well-known property of the total variation distance: for distributions
p and q and a function f bounded by [0, 1],

|Epf(x)− Eqf(x)| ≤ δ(p, q) . (*)

For convenience we will write

δ := δ(β(z, xb), β(z
′, xb)) .

A listener using the speaker’s language expects a reward of∑
xb

p(xb)
∑
xa

p(xa|xb, z)r(xa, xb, U(z, xb))

≤
∑
xb

p(xb)

(∑
xa

p(xa|xb, z′)r(xa, xb, U(z, xb)) + δ

)
via (*). From the assumption of player rationality:

≤
∑
xb

p(xb)

(∑
xa

p(xa|xb, z′)r(xa, xb, U(z′, xb)) + δ

)
using (*) again:

≤
∑
xb

p(xb)

(∑
xa

p(xa|xb, z)r(xa, xb, U(z′, xb)) + 2δ

)
≤
∑
xa,xb

p(xa, xb|z)r(xa, xb, U(z′, xb)) +
√
2D .

So the true reward achieved by a z′-speaker receiving a translated code is only additively worse than the
native z-speaker reward:( ∑

xa,xb

p(xa, xb|z)r(xa, xb, U(z, xb))

)
−
√
2D



B Implementation details

B.1 Agents

Learned agents have the following form:
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where h is a hidden state, z is a message from the
other agent, u is a distribution over actions, and
x is an observation of the world. A single hidden
layer with 256 units and a tanh nonlinearity is used
for the MLP. The GRU hidden state is also of size
256, and the message vector is of size 64.

Agents are trained via interaction with the world
as in Hausknecht and Stone (2015) using the
ADAM optimizer (Kingma and Ba, 2014) and a
discount factor of 0.9. The step size was chosen
as 0.003 for reference games and 0.0003 for the
driving game. An ε-greedy exploration strategy
is employed, with the exploration parameter for
timestep t given by:

ε = max


(1000− t)/1000
(5000− t)/50000
0

As in Foerster et al. (2016), we found it useful
to add noise to the communication channel: in this
case, isotropic Gaussian noise with mean 0 and
standard deviation 0.3. This also helps smooth
p(z|xa) when computing the translation criterion.

B.2 Representational models

As discussed in Section 5, the translation criterion
is computed based on the quantity p(z|x). The pol-
icy representation above actually defines a distri-
bution p(z|x, h), additionally involving the agent’s
hidden state h from a previous timestep. While
in principle it is possible to eliminate the depen-
dence on h by introducing an additional sampling
step into Algorithm 1, we found that it simplified
inference to simply learn an additional model of
p(z|x) directly. This model is trained alongside the
learned agent to imitate its decisions, but does not
get to observe the recurrent state, like so:
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Here the multilayer perceptron has a single hidden
layer with tanh nonlinearities and size 128. It is
also trained with ADAM and a step size of 0.0003.

We use exactly the same model and parameters
to implement representations of p(z|x) for human
speakers, but in this case the vector z is taken to be
a distribution over messages in the natural language
inventory, and the model is trained to maximize the
likelihood of labeled human traces.

B.3 Tasks
Colors We use the version of the XKCD dataset
prepared by McMahan and Stone (2015). Here the
input feature vector is simply the LAB representa-
tion of each color, and the message inventory taken
to be all unigrams that appear at least five times.

Birds We use the dataset of Welinder et al. (2010)
with natural language annotations from Reed et al.
(2016). The model’s input feature representations
are a final 256-dimensional hidden feature vector
from a compact bilinear pooling model (Gao et al.,
2016) pre-trained for classification. The message
inventory consists of the 50 most frequent bigrams
to appear in natural language descriptions; example
human traces are generated by for every frequent
(bigram, image) pair in the dataset.

Driving Driving data is collected from pairs of
human workers on Mechanical Turk. Workers re-
ceived the following description of the task:

Your goal is to drive the red car onto the
red square. Be careful! You’re driving
in a thick fog, and there is another car
on the road that you cannot see. How-
ever, you can talk to the other driver to
make sure you both reach your destina-
tions safely.

Players were restricted to messages of 1–3 words,
and required to send at least one message per game.
Each player was paid $0.25 per game. 382 games
were collected with 5 different road layouts, each
represented as an 8x8 grid presented to players as
in Figure 8. The action space is discrete: players
can move forward, back, turn left, turn right, or
wait. These were divided into a 282-game training
set and 100-game test set. The message inventory
consists of all messages sent more than 3 times.
Input features consists of indicators on the agent’s
current position and orientation, goal position, and
map identity. Data is available for download at
http://github.com/jacobandreas/neuralese.

http://github.com/jacobandreas/neuralese

