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EXIsting Approaches

Generate from AMR
> MT-based
» Flanigan et al. 2016, Pourdamaghani and Knight 2016, Song et al. 2016
> Grammar-based
» Lampouras and Vlachos 2017, Mille et al. 2017

Parse to AMR

> Alignment-based
» Flanigan et al. 2014, 2017 (JAMR)

> Grammar-based
» Wang et al. 2016 (CAMR), Pust et al. 2015, Artzi et al. 2015, Damonte et al. 2017,

Goodman et al. 2016, Puzikov et al. 2016, Brandt et al. 2017, Nguyen et al. 2017

> Neural-based

» Barzdins and Gosko 2016, Peng et al. 2017, Noord and Bos 2017, Buys and Blunsom
2017



Overview

» Sequence-to-seguence architecture
» End-to-end model w/o intermediate representations
» Linearisation of AMR graph to string

» Pre-process

» Paired Training

» Scalable data augmentation algorithm
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Experimental Setup

AMR LDC2015E86 (SemEval-2016 Task 8)
» Hand annotated MR graphs: newswire, forums
» ~10k training / 1k development / 1k test pairs

Train

Evaluation T P

» BLEU n-gram precision (Generation)
(Papineni et al., 2002)

» SMATCH score (Parsing)

(Cai and Knight, 2013)



EXperiments

» Vanilla experiment
» Limited Language Model Capacity
» Paired Training

» Data augmentation algorithm
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First Attempt (Generation)

B TreeloStr M TSP = PBMT = NeuralAMR

All systems use a

Language Model
jtrained on a very

large corpus.

BLEU

l We will emulate via
S data augmentation.

TreeToStr: Flanigan et al, NAACL 2016
TSP: Song et al, EMNLP 2016 |
PBMT: Pourdamaghani and Knight, INLG 2016 (Sennrich et al., ACL 2016)
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b) Avg sent length: 20 words
c) Limited Language
Modeling capacity
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Data Augmentation

| Original Dataset: ~16k graph-sentence pairs
FEEREFEREE EERE TR A Gigaword: ~183M sentences *only*
FitiEH Sample sentences with vocabulary overlap
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Semi-supervised Learning

> Self-training
» McClosky et al. 2006

> Co-training
» Yarowski 1995, Blum and Mitchell 1998, Sarkar 2001
» Sogaard and Rishoj, 2010
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Self-train Parser

Paired Training

Train AMR Parser P on Original Dataset t:%‘?a AEMJB (8, dgq? )
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Fine-tune: init parameters from previous

step and train on Original Dataset
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hold

:ARGO (person P\efereﬂCe

:ARGO-0of (have-role o _ .
.ARGL loc 0 US officials held an expert group meeting in

:ARG2 official) January 2002 in New York .

:ARG1l (meet

:ARGO (person PredICtIOﬂ

:ARGl-of expert

) :ARG2-of group) In January 2002 United States officials held a

.time (date-entity year O month 0) meeting of the group experts in New York .
:location loc 1 T — T

Reference Prediction

The report stated British government must
help to stabilize weak states and push for
International regulations that would stop
terrorists using freely available information to
create and unleash new forms of biological
warfare such as a modified version of the
influenza virus.

The report stated that the Britain government
must help stabilize the weak states and push
international regulations to stop the use of freely
available information to create a form of new
biological warfare such as the modified version
of the influenza .

T — T

T — T —
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Seqguence-to-sequence models for Parsing and Generation
Paired Training: scalable data augmentation algorithm
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