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Overview 
‣ Sequence-to-sequence architecture 

‣ End-to-end model w/o intermediate representations 

‣ Linearisation of AMR graph to string 

‣ Pre-process 

‣ Paired Training 

‣ Scalable data augmentation algorithm
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Experimental Setup 
AMR LDC2015E86 (SemEval-2016 Task 8) 
‣ Hand annotated MR graphs: newswire, forums 
‣ ~16k training / 1k development / 1k test pairs 

Train 
‣ Optimize cross-entropy loss

Evaluation 
‣ BLEU n-gram precision (Generation) 

(Papineni et al., 2002) 

‣ SMATCH score (Parsing) 
(Cai and Knight, 2013)



Experiments 
‣ Vanilla experiment 

‣ Limited Language Model Capacity 

‣ Paired Training 

‣ Data augmentation algorithm
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All systems use a 
Language Model 
trained on a very  
large corpus. 

We will emulate via  
data augmentation.

(Sennrich et al., ACL 2016)
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Semi-supervised Learning 
‣Self-training
‣McClosky et al. 2006 

‣Co-training
‣ Yarowski 1995, Blum and Mitchell 1998, Sarkar 2001 
‣ Sogaard and Rishoj, 2010
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warfare such as a modified version of the 
influenza virus. 

Reference
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