
Appendices
A Morphological Lexicons and Training

Corpora

Here we provide additional information about the
training corpora for the skip-gram model and
the morphological lexicons used by our Gaussian
graphical model.

Tokens Types TTR
Czech 83,048,682 1,663,361 0.02
English 1,778,938,441 7,403,109 0.004
German 609,406,708 8,582,032 0.0141
Spanish 396,443,513 6,719,014 0.0169
Turkish 58,746,962 2,272,946 0.0387

Table 5: The number of types and tokens and their ratio
(TTR) in each Wikipedia corpus.

Lexicon Types OOV
Czech MorfFlex 25,226,946 97.9
English CELEX 79,208 2.3
German CELEX 365,530 43.9
Spanish Wiktionary 668,681 66.1
Turkish Wiktionary 118,786 32.2

Table 6: Sizes of the various morphological lexicons and their
origin. We note that our method is compatible with any mor-
phologically annotated lexicon as well as finite-state analyz-
ers that have the capacity to analyze an unbounded number of
words. We also report OOV, the percentage of the types in the
morphological lexicon that are not attested in the Wikipedia
corpus.

B Additional Results

We include additional results for the experiment
in section 8.2. In addition to showing results for
all our test languages in Figure 4, we also show a
different breakdown of the results in Figure 5.

105 106 107 108

2000

4000

6000

8000

10000

Pe
rp

le
xi

ty
Pe

r
W

or
d English

105 106 107 1080
5000

10000
15000
20000
25000
30000 German

105 106 107 1081000
2000
3000
4000
5000
6000
7000
8000 Spanish

[0,∞)-U
[0, 1)-U
[1, 10)-U
[10, 20)-U
[0,∞)-S
[0, 1)-S
[1, 10)-S
[10, 20)-S

105 106 1070
5000

10000
15000
20000
25000
30000
35000

Czech

105 106 1070
5000

10000
15000
20000
25000
30000
35000

Turkish

Figure 4: A full version of Figure 3, with all 5 languages.

105 106 107 1080
2000
4000
6000
8000

10000
12000

Pe
rp

le
xi

ty
Pe

r
W

or
d English

105 106 107 1080
5000

10000
15000
20000
25000
30000 German

105 106 107 1081000

2000

3000

4000

5000

6000

7000 Spanish
[0,∞)-U
[0, 1)-U
[1, 10)-U
[10, 20)-U
[0,∞)-S
[0, 1)-S
[1, 10)-S
[10, 20)-S

105 106 1070
5000

10000
15000
20000
25000
30000
35000

Czech

105 106 1070
5000

10000
15000
20000
25000
30000
35000
40000 Turkish

Figure 5: An alternate version of Figure 4. The aggregate curves are the same as before, but the frequency breakdown into word
categories is now performed separately at each training size. These points are useful to look up or compare the performance
of different word categories (novel, rare, frequent) at a given training size. However, the points along a given curve are
incomparable: the [0, 1) curve aggregates over many fewer types at the right than at the left. Sometimes all breakdown curves
get worse at once even while their aggregate gets better, an example of Simpson’s paradox.

C Coordinate Descent Algorithm for MAP Inference

We now derive the algorithm for maximizing the posterior probability p(w,m | v). This is equivalent
to minimizing (7), which is the negative log of the posterior probability plus a constant, repeated here:

L(w,m) =
∑
k

λ||mk||22 +
∑
i

||wi −
∑
k∈Mi

mk||2Σi
+
∑
i

||vi − wi||2Σ′
i/ni

(9)

Recall that ||x||2Σ
def
= xT Σ

x where

Σdef
= Σ−1, the inverse covariance matrix.

We take the partial gradient with respect to a particular vector mk (renaming the dummy variable k to
j):

∂L
∂mk

=
∂

∂mk

∑
j

λ||mj ||22 +
∑
i

||wi −
∑
j∈Mi

mj ||2Σi
+
∑
i

||vi − wi||2Σ′
i/ni

 (10)

=
∂

∂mk

∑
j

λ||mj ||22 +
∑
i

||wi −
∑
j∈Mi

mj ||2Σi

 (11)

= 2λmk.+
∑
i∈Wk

−2

Σ

i(wi −
∑
j∈Mi

mj) (12)

We now set this equal to 0:

0 = λmk −
∑
i∈Wk

Σ

i(wi −
∑
j∈Mi

mj) (13)

Rearranging terms,

λmk =
∑
i∈Wk

(

Σ

iwi −
∑
j∈Mi

Σ

imj) (14)

λmk +
∑
i∈Wk

Σ

imk =
∑
i∈Wk

(

Σ

iwi −
∑

j∈Mi,j 6=k

Σ

imj) (15)

λI +
∑
i∈Wk

Σ

i

mk =
∑
i∈Wk

(

Σ

iwi −
∑

j∈Mi,j 6=k

Σ

imj). (16)

Finally, we arrive at the update rule for mk:

mk ←

λI +
∑
i∈Wk

Σ

i

−1 ∑
i∈Wk

Σ

i(wi −
∑

j∈Mi,j 6=k

mj). (17)

Now take the partial gradient of L with respect to a particular vector wi (renaming dummy variable i to
j):

∂L
∂wi

=
∂

∂wi

∑
k

λ||mk||22 +
∑
j

||wj −
∑
k∈Mj

mk||2Σj
+
∑
j

||vj − wj ||2Σ′
i/ni

 (18)

=
∂

∂wi

∑
j

||wj −
∑
k∈Mj

mk||2Σj
+
∑
j

||vj − wj ||2Σ′
i/ni

 (19)

= 2

Σ

i(wi −
∑
k∈Mi

mk)− 2ni

Σ′
i(vi − wi) (20)

Setting this equal to 0, we get

Σ

i(wi −
∑
k∈Mi

mk) = ni

Σ′
i(vi − wi) (21)

(
ni

Σ′
i +

Σ

i

)
wi = ni

Σ′
ivi +

Σ

i

∑
k∈Mi

mk (22)

This yields the update rule

wi ← (ni

Σ′
i +

Σ

i)
−1

ni Σ′
ivi +

Σ

i

∑
k∈Mi

mk

 (23)

