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1 Training and Inference of Semi-CRFs

In this section, we show more details about the
training and inference of Semi-CRFs following the
settings we made in the main paper.

1.1 Training of Semi-CRF-based Parameters

Given training data, all the parameters of grSemi-
CREFs can be learnt by maximizing log likelihood,
i.e., £ = logp(s|x). To simplify representations,
we introduce some auxiliary notations, includ-
ing g(hj, dj,yj-1,y5) = F(s5,%) + A(y;j-1,v;)
and G(s,x) = Y%, g(hj.dj,yj—1.;). Then
the likelihood can be rewritten as p(s|x) =

Z(x) exp(G(s,x)) where the normalization factor
Z(x) =Y o exp(G(s,x)).
We further define
ayr=log > exp(G(s,x)), (1)
s'€s1.4,y

where si., denotes all segmentations for
(z1, ..., zx) with y being the tag of the ending seg-
ment. And we also define

By.i = log Z

s'€spt1:7,y

exp(G(s',x)), 2)

where sp.7, denotes all segmentations for
(Tk+1, ..., x7) With y being the tag of the segment
which contains xy,.

Then, by using a Semi-CRF version of forward-
backward algorithms, we can compute ¢, j and
By, iteratively, i.e.,
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where the boundary conditions are setted as
ayr=0fork <Oand 8, =0fork >1T.

Then, the normalization factor Z(x) can be de-
noted as

x) = > exp(ay,), ©)
yey
and corresponding partial derivative is
0Z(x) 1

exp(ay k—atg(k,d,y', y)+By.a).

©)
Thus, the derivative of the objective function is
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where I(-) is the indicator function'.
Then, we can easily compute gradients for
Semi-CRF-based parameters ie.,
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1.2 Training of grConv Parameters

Thanks to the recursive structure, the backpropa-
gated gradients follow
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where
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0z,
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and PYSROIn is computed in Eq. (10).

Embeddings can be learnt using 66) as

grSemi-CRFs use embeddings as
segment-level features directly.

For Wy, we can compute the local partial
derivative first, i.e.,
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Thus we have
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The gradients for W and by can be computed in
almost the same ways.
For Gy, the local partial derivative can be de-
noted as
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Notice that G;, € R3P*D has 3D rows where
0r1.i,0r and Oy ; corresponds to the ith, (D +
i)th, and (2D + i)th rows of Gy. With a little
abuse of notations (i.e., we use £ to denote num-
bers 0, 1, 2 corresponding to rows of G, and char-
acters L, R, M corresponding to the gating coeffi-
cients),
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Finally, we have,
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The gradients for G and bg can be computed in
a similar way.

1.3 Inference of grSemi-CRFs

The inference problem is, given parameters
and x, find the best tag segmentation s* =
argmaxg log p(s|x) = argmaxg leszll G(s,x).
This can be solved by using a Semi-Markov ver-
sion of the Viterbi algorithm. We use V}, ;. to de-
note the maximum value for Zs’em:k,y G(¢,x).
Then the update equation is, for ¢ > 0,

Vi = max LVy/,k,dJrg(kfdJrl,d,y/,y). (18)
For the boundary case, we set V, , = 0 for k& < 0.
Finally, the best segmentation s* corresponds to
the path traced by max,cy Vy 7.



