Supplementary Materials for Segment-Level Sequence Modeling using Gated Recursive Semi-Markov Conditional Random Fields

Jingwei Zhuo^{1,2}, Yong Cao², Jun Zhu¹, Bo Zhang¹, Zaiqing Nie²

¹Dept. of Comp. Sci. & Tech., State Key Lab of Intell. Tech. & Sys., TNList Lab,

Tsinghua University, Beijing, 100084, China

²Microsoft Research, Beijing, 100084, China

{zjw15@mails, dcszj@mail, dcszb@mail}.tsinghua.edu.cn; {yongc, znie}@microsoft.com

1 Training and Inference of Semi-CRFs

In this section, we show more details about the training and inference of Semi-CRFs following the settings we made in the main paper.

1.1 Training of Semi-CRF-based Parameters

Given training data, all the parameters of grSemi-CRFs can be learnt by maximizing log likelihood, i.e., $\mathcal{L} = \log p(\mathbf{s}|\mathbf{x})$. To simplify representations, we introduce some auxiliary notations, including $g(h_j, d_j, y_{j-1}, y_j) = F(s_j, \mathbf{x}) + A(y_{j-1}, y_j)$ and $G(\mathbf{s}, \mathbf{x}) = \sum_{j=1}^{|\mathbf{s}|} g(h_j, d_j, y_{j-1}, y_j)$. Then the likelihood can be rewritten as $p(\mathbf{s}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(G(\mathbf{s}, \mathbf{x}))$ where the normalization factor $Z(\mathbf{x}) = \sum_{\mathbf{s}'} \exp(G(\mathbf{s}', \mathbf{x}))$.

We further define

$$\alpha_{y,t} = \log \sum_{\mathbf{s}' \in \mathbf{s}_{1:t,y}} \exp(G(\mathbf{s}', \mathbf{x})), \tag{1}$$

where $s_{1:k,y}$ denotes all segmentations for $(x_1, ..., x_k)$ with y being the tag of the ending segment. And we also define

$$\beta_{y,k} = \log \sum_{\mathbf{s}' \in \mathbf{s}_{k+1:T,y}} \exp(G(\mathbf{s}', \mathbf{x})),$$
(2)

where $\mathbf{s}_{k:T,y}$ denotes all segmentations for $(x_{k+1}, ..., x_T)$ with y being the tag of the segment which contains x_k .

Then, by using a Semi-CRF version of forwardbackward algorithms, we can compute $\alpha_{y,k}$ and $\beta_{y,k}$ iteratively, i.e.,

$$\alpha_{y,k} = \log \sum_{d=1}^{L} \sum_{y' \in \mathcal{Y}} \exp\left(\alpha_{y',k-d} + g(k-d+1,d,y',y)\right),$$
(3)

$$\beta_{y,k} = \log \sum_{d=1}^{L} \sum_{y' \in \mathcal{Y}} \exp\left(\beta_{y',k+d} + g(k+1,d,y,y')\right), \quad (4)$$

* This work was done when J.W.Z was on an internship with Microsoft Research.

where the boundary conditions are setted as $\alpha_{y,k} = 0$ for $k \le 0$ and $\beta_{y,k} = 0$ for $k \ge T$.

Then, the normalization factor $Z(\mathbf{x})$ can be denoted as

$$Z(\mathbf{x}) = \sum_{y \in \mathcal{Y}} \exp(\alpha_{y,k}), \tag{5}$$

and corresponding partial derivative is

$$\frac{\partial Z(\mathbf{x})}{\partial g(k,d,y',y)} = \frac{1}{Z(\mathbf{x})} \exp(\alpha_{y',k-d} + g(k,d,y',y) + \beta_{y,d}).$$
(6)

Thus, the derivative of the objective function is

$$\frac{\partial \mathcal{L}}{\partial g(k,d,y',y)} = \sum_{j=1}^{|\mathbf{s}|} \mathbb{I}(s_j = \langle k, d, y \rangle, y_{j-1} = y') - \frac{\partial Z(\mathbf{x})}{\partial g(k,d,y',y)},$$
(7)

where $\mathbb{I}(\cdot)$ is the indicator function¹.

Then, we can easily compute gradients for Semi-CRF-based parameters, i.e.,

$$\frac{\partial \mathcal{L}}{\partial A(y',y)} = \sum_{d=1}^{L} \sum_{k=d}^{T} \frac{\partial \mathcal{L}}{\partial g(k,d,y',y)},$$
(8)

$$\frac{\partial \mathcal{L}}{\partial [\mathbf{V}_0]_{y,j}} = \sum_{d=1}^L \sum_{k=d}^T \sum_{y' \in \mathcal{Y}} \frac{\partial \mathcal{L}}{\partial g(k,d,y',y)} z_{k,j}^{(d)}, \qquad (9)$$

and

$$\left\lfloor \frac{\partial \mathcal{L}}{\partial F(\mathbf{s}_k^{(d)})} \right\rfloor_y = \sum_{y' \in \mathcal{Y}} \frac{\partial \mathcal{L}}{\partial g(k, d, y', y)}.$$
 (10)

where $\left[\frac{\partial \mathcal{L}}{\partial F(\mathbf{s}_{k}^{(d)})}\right]_{y}$ is the *y*th entry of the length- $|\mathcal{Y}|$ vector $\frac{\partial \mathcal{L}}{\partial F(\mathbf{s}_{k}^{(d)})}$.

1.2 Training of grConv Parameters

Thanks to the recursive structure, the backpropagated gradients follow

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}_{k}^{(d)}} = \frac{\partial \mathbf{z}_{k}^{(d+1)}}{\partial \mathbf{z}_{k}^{(d)}} \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{k}^{(d+1)}} + \frac{\partial \mathbf{z}_{k-1}^{(d+1)}}{\partial \mathbf{z}_{k}^{(d)}} \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{k-1}^{(d+1)}} + V_{0}^{(d)^{\mathrm{T}}} \frac{\partial \mathcal{L}}{\partial F(\mathbf{s}_{k}^{(d)}, \mathbf{x})},$$
(11)

 ${}^{1}\mathbb{I}(E) = 1$ when condition E = true and $\mathbb{I}(E) = 0$ when condition E = false.

[†] J.Z is the corresponding author.

where

$$\frac{\partial \mathbf{z}_{k}^{(d+1)}}{\partial \mathbf{z}_{k}^{(d)}} = \operatorname{diag}(\boldsymbol{\theta}_{L}) + \operatorname{diag}(\boldsymbol{\theta}_{M} \circ g'(\boldsymbol{\alpha}_{k}^{(d+1)})) W_{L},
\frac{\partial \mathbf{z}_{k-1}^{(d+1)}}{\partial \mathbf{z}_{k}^{(d)}} = \operatorname{diag}(\boldsymbol{\theta}_{R}) + \operatorname{diag}(\boldsymbol{\theta}_{M} \circ g'(\boldsymbol{\alpha}_{k-1}^{(d+1)})) W_{R},$$
(12)

and $\frac{\partial \mathcal{L}}{\partial F(\mathbf{s}_k^{(d)}, \mathbf{x})}$ is computed in Eq. (10).

Embeddings can be learnt using $\frac{\partial \mathcal{L}}{\partial \mathbf{z}_k^{(0)}}$ as grSemi-CRFs use embeddings as length-1 segment-level features directly.

For W_L , we can compute the local partial derivative first, i.e.,

$$\left[\frac{\partial \mathbf{z}_{k}^{(d)}}{\partial \mathbf{W}_{L}}\right]_{i,j} = \theta_{M,i}g'(\alpha_{k,i}^{(d)})z_{k,j}^{(d-1)}.$$
(13)

Thus we have

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{L}} = \sum_{d=1}^{L} \sum_{k=1}^{T-d+1} \left[\boldsymbol{\theta}_{M} \circ g'(\boldsymbol{\alpha}_{k}^{(d)}) \circ \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{k}^{(d)}} \right] \mathbf{z}_{k}^{(d-1)^{\mathrm{T}}}.$$
(14)

The gradients for W_R and b_W can be computed in almost the same ways.

For G_L , the local partial derivative can be denoted as

$$\begin{bmatrix} \frac{\partial \mathbf{z}_{k}^{(d)}}{\partial \mathbf{G}_{L}} \end{bmatrix}_{D \times \ell + i, j} = z_{k, i}^{(d-1)} \begin{bmatrix} \frac{\partial \boldsymbol{\theta}_{L}}{\partial \mathbf{G}_{L}} \end{bmatrix}_{D \times \ell + i, j} + z_{k+1, i}^{(d-1)} \begin{bmatrix} \frac{\partial \boldsymbol{\theta}_{R}}{\partial \mathbf{G}_{L}} \end{bmatrix}_{D \times \ell + i, j} + \hat{z}_{k, i}^{(d)} \begin{bmatrix} \frac{\partial \boldsymbol{\theta}_{M}}{\partial \mathbf{G}_{L}} \end{bmatrix}_{D \times \ell + i, j}.$$
(15)

Notice that $G_L \in \mathbb{R}^{3D \times D}$ has 3D rows where $\theta_{L,i}, \theta_{R,i}$ and $\theta_{M,i}$ corresponds to the *i*th, (D + i)th, and (2D + i)th rows of G_L . With a little abuse of notations (i.e., we use ℓ to denote numbers 0, 1, 2 corresponding to rows of G_L , and characters L, R, M corresponding to the gating coefficients),

$$\begin{bmatrix} \frac{\partial \boldsymbol{\theta}_L}{\partial \mathbf{G}_L} \end{bmatrix}_{D \times \ell + i, j} = \theta_{L,i} z_{k,j}^{(d-1)} \left(\mathbb{I}(\ell = L) - \theta_{\ell,i} \right),$$
$$\begin{bmatrix} \frac{\partial \boldsymbol{\theta}_R}{\partial \mathbf{G}_L} \end{bmatrix}_{D \times \ell + i, j} = \theta_{R,i} z_{k,j}^{(d-1)} \left(\mathbb{I}(\ell = R) - \theta_{\ell,i} \right),$$
$$\begin{bmatrix} \frac{\partial \boldsymbol{\theta}_M}{\partial \mathbf{G}_L} \end{bmatrix}_{D \times \ell + i, j} = \theta_{M,i} z_{k,j}^{(d-1)} \left(\mathbb{I}(\ell = M) - \theta_{\ell,i} \right).$$
(16)

Finally, we have,

$$\left[\frac{\partial \mathcal{L}}{\partial \mathbf{G}_L}\right]_{D \times \ell + i, j} = \sum_{d=1}^{L} \sum_{k=1}^{T-d+1} \frac{\partial \mathcal{L}}{\partial z_{k, i}^{(d)}} \left[\frac{\partial \mathbf{z}_k^{(d)}}{\partial \mathbf{G}_L}\right]_{D \times \ell + i, j} .$$
(17)

The gradients for G_R and \mathbf{b}_G can be computed in a similar way.

1.3 Inference of grSemi-CRFs

The inference problem is, given parameters and \mathbf{x} , find the best tag segmentation $\mathbf{s}^* = \operatorname{argmax}_{\mathbf{s}} \log p(\mathbf{s}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{s}} \sum_{j=1}^{|\mathbf{s}|} G(\mathbf{s}, \mathbf{x})$. This can be solved by using a Semi-Markov version of the Viterbi algorithm. We use $V_{y,k}$ to denote the maximum value for $\sum_{\mathbf{s}' \in \mathbf{s}_{1:k,y}} G(\mathbf{s}', \mathbf{x})$. Then the update equation is, for i > 0,

$$V_{y,k} = \max_{y' \in \mathcal{Y}, d=1, \dots, L} V_{y',k-d} + g(k-d+1, d, y', y).$$
(18)

For the boundary case, we set $V_{y,k} = 0$ for $k \le 0$. Finally, the best segmentation s^{*} corresponds to the path traced by $\max_{y \in \mathcal{Y}} V_{y,T}$.