== Unsupervised Learning and Modeling of Knowledge and Intent for Spoken Dialogue Systems
N ..
f Yun-Nung (Vivian) Chen

Carnegie Mellon University Jvchen@cs.cmu.edu

Framework

1) Given unlabeled conversations, how can a system Knowledge Acquisition SLU Modeling by MF
- automatically induce and organize domain-specific - .
~ “canlhave a cheap restaurant”
concepts? [ Ontology Induction i & .
***************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** F. |
= N f S : P
Jroe PREP_FOR Unlabeled -
- Knowledge Acquisition > \ Collection ) R, —
Restaurant ~_ __~ | | Feature Relation Model B
Asking <= | Ontology Induction — ,‘PREP_FOR —> Feature Modgl "\"'Relafcjpn Propagation
Conversations |- {Structure Learning J @ AMOD = > Sl_:‘:rcrfiunrg Mo del :
/ o Concept Relation Model d Semantlc Representation
Unlabeled Collection _ .
Domain-Specific Ontology
2) With the automatically achiI’Ed kﬂOWlEdge, how ’7 Feature Observation 4{ F Semantic Concept (Slot / Beha‘\‘/~i§6l’)*—‘
food  cheap restaurant  expensiveness  food target
can a system understand utterances? Utterance 1

‘can i have a cheap restaurant” i would like a cheap restaurant @ @ @ @

Utterance 2

SLU Modeling by MF l
4 ( semantic Decoding | =) find a restaurant for chinese food | | : ) < : ) | : ) : |
SLU Component

O
)
O
o
Co
U
O
U
— 1S9l —— | uledqp —

Behavior Prediction | (" 7 *—/*~-—~ J e
Domain-Specific Ontology : | | | /
price="“cheap”, target="restaurant” : e et e
behavior=navigation AN ST TN PN F
2 @ o 5 s = =
- AN T T | ¥ = S 70 T
L Can a dialogue System automatica"y Iearn Open <Feature Relation Model> Semantic ConceptlnductioNoncept Relation Mode>
domain knowledge and then understand users? < Reasoning with Matrix Factorization >
W -
> locale by use s tvpe commerce scenario e seeking
: : : : building YP expensiveness P desiring — task
* Domain: restaurant recommendation in an in- range range || cating
: food
= 0 .. —> food . :
- car settmg (WER 37A)) origin Z.art o.rlentatlonal sending |— postcode
‘ o Dialogue slots: addr, area, food, phone, contacting  — phone IO'Z‘;C:O” - area
postcode, pricerange, task, type speak on topic —addr |part inner outer

Knowledge Acquisition SLU Modeling by Matrix Factorization

» Ontology Induction (Chen et al., 2013 & 2014) » Semantic Decoding (Chen et al., 2015b) > Behavior Prediction

Frame-semantic parsing on ASR results (Dasetal., 2013) * concept = semantic slot * concept =2 user behavior
* lexical unit 9 slot filler o Relation Propagation Model v Assumption: The domain-

> Structure Learning (Chen et al., 2015a) " Feature Knowledge Graph specific features/concepts have
Typed syntactic dependencies on ASR « Concept Knowledge Graph more dependency to each other.

https://github.com/yvchen/MRRW/
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