
Adding Semantics to Data-Driven Paraphrasing: Supplementary Material

1 Data Annotation

We use Amazon Mechanical Turk (MTurk) to col-
lect labels for our phrase pairs. We show each pair
to 5 independent workers, and ask each worker
to use their best judgement to label the relation-
ship that holds between the words. The work-
ers were asked to choose one of 7 relations, or to
mark that “I cannot tell.” The exact options given
to the workers are shown in Figure 1. These op-
tions are based on the natural logic relations de-
scribed, although with some simplifications. We
omit the cover relation entirely, as its practical-
ity is not obvious, and we replace “negation” with
the weaker notion of “antonyms” or “opposites.”
Workers showed moderate agreement overall, with
Fleiss’s κ = 0.56 (Landis and Koch, 1977). Table
1 gives agreements for each relation individually.
We take the majority label for each pair as the true
label, breaking ties at random. Ties occurred in
about 25% of cases.

Quality Control In order to measure worker re-
liability, we embedded gold-standard examples of
synonyms (≡) and antonyms (ˆ) from WordNet.
We drew random pairs of words as gold standard
examples of independent (#) pairs. After inspect-
ing the WordNet hypernym and hyponym pairs
ourselves, we decided they were too unclear to be
used as gold-standard examples. We considered
any of≡,A,@ to be correct for the synonyms; this
choice was made after we looked through the syn-
onym controls and determined than many could
be better labeled as hypernyms (morning/sunrise)
or hyponyms (fabric/material). Each HIT con-
sisted of two control questions, and workers who
fell below 50% accuracy were rejected. Workers
achieved 82% accuracies on our controls overall:
92% on the independent pairs, 70% on the syn-
onyms, and 64% on the antonyms. Of the syn-
onyms, 50% were labeled ≡ and another 20%
were labeled either A or @.

Figure 1: Turkers were asked to choose one of the above an-
notations to describe the relationship of the first word to the
second. These options correspond to the 6 basic entailment
relations plus “other”.

κ N
≡ is the same as 0.46 811
@ is more specific than 0.51 1,171
A is more general than 0.47 1,330
ˆ is the exact opposite of 0.75 280
| is mutually exclusive with 0.41 442
∼ is related in some other way to 0.43 1,825
# is not related to 0.66 3,722

Overall 0.56 9,603

Table 1: Inter-annotator agreement and number of pairs for
each of the entailment options given to Turkers.

2 Automatic Classification

2.1 Features
Lexical features We compute a variety of sim-
ple lexical features for each phrase pair. These in-
clude features about the words in each phrase, the
length of each phrase, and the part of speech tags
for each word in the phrase, as well as string simi-
larity features, including Levenstein distance, Jac-
card similarity, Hamming similarity, and common
substrings. A full list is given in Table 2.

Distributional features We follow Lin and Pan-
tel (2001) in computing context vectors for each
word based on its dependency contexts in the An-
notated Gigaword corpus (Napoles et al., 2012).



Binary p1 is a substring of p2
Binary p2 is a substring of p1
Binary fine-POS(p1) == fine-POS(p2)
Binary coarse-POS(p1) == coarse-POS(p2)
Binary Both p1 and p2 are lexical
Binary Either p1 or p2 is phrasal
Binary (sparse) all words in p1, position unspecified
Binary (sparse) all words in p2, position unspecified
Binary (sparse) all words in p1, noted as p1
Binary (sparse) all words in p2, noted as p2
Binary (sparse) all POS tags in p1, noted as p1
Binary (sparse) all POS tags in p2, noted as p2
Real-valued Number of words in p1
Real-valued Number of words in p2
Real-valued Number of shared POS tags
Real-valued levenstein(p1, p2)
Real-valued jaccard(p1, p2)
Real-valued hamming(p1, p2)

Table 2: Lexical features for a phrase pair 〈p1, p2〉. ”Position
unspecified” means the feature reflected e.g that the word ap-
peared at all in the phrase pair. “Noted as p1” means that the
feature was specific to the word having been observed in the
first phrase of the pair.

For a single word w, we compute the “depen-
dency context” vector by simply considering every
dependency relation in which the w participates.
When w is the governor of a relation r and v is the
dependent, we record the context as r:gov:v; when
w is the dependent of a relation r and v is the gov-
ernor, we record the relation as r:dep:v. For mul-
tiword phrases p = w1 . . . wk, we consider the de-
pendency context of p to be the combined depen-
dency contexts r:*:v of the words w1 . . . wk, sub-
ject to the constraint that v is not one of w1 . . . wk.

Given the phrase pair 〈p1, p2〉, let P1 be the set
of contexts of p1 and P2 the set of contexts of p2.
We compute the following features:

• The number of contexts for each phrase:
|P1|,|P2|

• The difference in the number of contexts:
|P1| − |P2|

• The number of shared contexts: |P1 ∩ P2|

• The Jaccard similarity of the contexts: |P1 ∩
P2|/|P1 ∪ P2|

Let w1(c) be the number of times p1 was ob-
served in context c, and w2(c) be the number of
times p2 was observed in context c. We compute
the various symmetric and asymmetric similarity
measure (Lin, 1998; Weeds et al., 2004; Szpektor
and Dagan, 2008; Clarke, 2009) using definitions
given in Kotlerman et al. (2010):

lin =

∑
c∈P1∩P2

w1(c) + w2(c)∑
c∈P1

w1(c) +
∑
c∈P2

w2(c)
,

weeds =

∑
c∈P1∩P2

w1(c)∑
c∈P1

w1(c)
,

clark =

∑
c∈P1∩P2

min(w1(c), w2(c))∑
c∈P1

w1(c)
,

balprec =
√
lin× weeds.

Paraphrase features There are a variety of fea-
tures distributed with PPDB, which we include in
our classifier. These include 33 different measures
used to sort the goodness of the paraphrases, in-
cluding distributional similarity, bilingual align-
ment probabilities, and lexical similarity. Among
those we found to have the best signal were p(f | e)
and p(e | f), the paraphrase probabilities for phrase
pair calculated according to Bannard and Callison-
Burch (2005), and AGigaSim, the distributional
similarity of the two words computed over the An-
notated Gigaword corpus. A complete list is given
in Ganitkevitch and Callison-Burch (2014).

Translation features PPDB is based on the
“bilingual pivoting”’ method, in which two
phrases are considered paraphrases if they share a
foreign translation. The English PPDB was built
by pivoting through 24 foreign languages. We
use these pivot words as features. For each pair
of phrases 〈p1, p2〉 in our data and each language
l, we compute two asymmetric similarity scores
siml1 and siml2 capturing the number of shared
translations as a fraction of the total translations
of each phrase:

siml1 =
| tl(p1) ∩ tl(p2) |
| tl(p1) |

and

siml2 =
| tl(p1) ∩ tl(p2) |
| tl(p2) |

where tl(p) is set of observed translations of the
phrase p in language l. We compute these ratios
by looking at each language l separately as well as
by pooling the translations from all languages, e.g.



sim∗1 =
| t∗(p1) ∩ t∗(p2) |
| t∗(p1) |

where t∗(p) is the pooled set of observed transla-
tions of the phrase p across all languages:

t∗(p) =
⋃
l

tl(p).

We also compute the mean, minimum, and max-
imum of the ratios across languages, e.g.

mean1 =
1

# languages

∑
l

siml1 .

Path features We use the Annotated Gigaword
corpus to compute path features as in Snow et
al. (2004). For each pair 〈p1, p2〉, we find all
sentences in the corpus in which the phrases co-
occur, and find all paths through the dependency
tree which connect the pair, ignoring paths longer
than 5 nodes. If p1 or p2 is a multiword phrase,
we collapse the entire phrase into a single node,
so that we consider all paths which originate from
any word in p1 and end at any word in p2, sub-
ject to the constraint that none of the intermediate
nodes on the path belong to p1 or p2.

We build a path lexicon consisting of all paths
which occurred between at least 5 unique pairs in
our data set. Then, the feature vector for 〈p1, p2〉 is
a binary vector indicating whether or not the pair
was observed with each path in our path lexicon.
We use three separate features to indicate the spe-
cial cases which p1 was not observed anywhere in
Gigaword, p2 was not observed anywhere in Gi-
gaword, or p1 never co-occured in a sentence with
p2.

WordNet Features We include features to cap-
ture the WordNet relation for each pair 〈p1, p2〉.
We consider WordNet’s defined synonym, hyper-
nym, hyponym, and antonym relations, as well
as the holonym, meronym, cause, entailment,
derivationally-related, similar-to, also-see, and
attribute links. We define the relation alternation
in WordNet as holding when p1 and p2 share a
common parent, but are not themselves in a hy-
pernymy relationship. We define the relation inde-
pendence in WordNet as holding when both p1 and
p2 appear in WordNet but none of the previously
defined relationships hold.

For each relation r and each part of speech pos
(noun, verb, adjective, and adverb), we include

a binary feature rpos indicating whether WordNet
contains any senses for p1 and p2 with POS pos
such that that r holds. We use specialOOVpos fea-
tures to signify that either p1 or p2 did not appear
in WN with the given POS tag pos.

2.2 Training
We use the scikit-learn1 toolkit to train a logis-
tic regression classifier. In order to overcome
the imbalanced distribution of our dataset, we
subsample training examples from each class in-
versely proportionally to the class’s frequency
in the training data; this is corresponds to the
class weight=‘auto’ parameter setting.

3 Nutcracker Configuration

We run NC without the paraphrasing preprocess-
ing step which was used to achieve the results re-
ported in Marelli et al. (2014). Our reason for do-
ing so is that the paraphrasing step uses PPDB and
interferes with our ability to isolate the effect of
our entailment annotations on the end-to-end per-
formance of the system. As a result, our num-
bers differ slightly from the state-of-the-art perfor-
mance reported for Nutcracker.

4 Evaluation of Predicted Entailment
Relations in Full PPDB

The main evaluation in the paper focuses on the
pairs in PPDB which also appear in RTE data.
We also evaluate the quality of the entailment
relations for randomly chosen paraphrase pairs
from the database. We expect performance on
these paraphrase pairs to be much lower, since
the pairs cover more complex syntactic categories
(e.g. which have resulted/and that have led) and
more abstract expressions (e.g. go back/start all
over again).

To evaluate these relations, we take a random
sample of 1,000 pairs for each of the predicted re-
lation types (#, ≡, @, ¬, ∼). We take a stratified
sample across confidence levels: i.e. for each re-
lation, we take all the pairs that the classifier pre-
dicted as having that relation, divide the list into 5
buckets based on the classifier’s confidence in the
prediction, and sample evenly from each bucket.
For the ¬ relation, there are 430 pairs, so we take
all of them. We gather labels on MTurk the same
way we did for the training data. Table 3 shows
the precisions for each relation at varying levels of

1http://scikit-learn.org

http://scikit-learn.org


confidence. Note that when the classifier predicts
a directed entailment, we fix the direction to the
forward entailment (@) direction.

The classifiers results are very good for the ≡
and ¬ classes. The performance is lower for the @
relation, but most of these errors come from mis-
classifying ≡ as @, an error that will still result
in correct behavior for most entailment tasks. For
example, mistakenly assuming that couch @ sofa
instead of couch ≡ sofa will still lead to correct
predictions.

Top Top Top All
N 10% 25% 50% Pairs

Pr
ed

ic
te

d

# 13.M 0.42 0.44 0.40 0.34
≡ 3.1M 0.89 0.74 0.73 0.67
@ 6.4M 0.40 0.32 0.30 0.17
¬ 430 1.00 0.90 0.84 0.82
∼ 1.2M 0.29 0.24 0.24 0.20

Table 3: Precision for predicted pairs, at varying confidence
cutoffs. N is the total number of unique pairs in the database
predicted for each relation. Top 10% refers to the 10% of
pairs for which the classifier predicted the given relation with
the highest confidence. Note that these precisions reflect only
lexical and phrasal relations, not syntactic paraphrase rules.

Classifying syntactic paraphrase rules In ad-
dition to lexical and phrasal paraphrase rules,
PPDB contains millions of syntactic paraphrase
rules which contain nonterminal symbols, e.g. the
NP1 of the NP2 / the NP2’s NP1. While we do
predict entailment relations for each of these rules,
we do so naively by applying the same process
that we apply to phrasal paraphrases, i.e. treating
the nonterminal symbols as though they are sim-
ply words. We acknowledge that these paraphrase
rules require special treatment and we leave this
for future work. We make no claims about the
quality of the entailment relations predicted for the
syntactic paraphrase rules, but release the predic-
tions anyway with the warning to use at your own
risk.
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