

Semantic Word Embedding (SWE)

Reference Manual (Readme)

Open-source toolkits, knowledge collections and applications

May 25, 2015

Quan Liu

National Engineering Laboratory for Speech and Language Information Processing

University of Science and Technology of China

Website: http://home.ustc.edu.cn/~quanliu/

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

1

Contents

Abstract .. 2

Chapter 1 Semantic Word Embedding .. 3

1.1 The Skip-gram moel ... 3

1.2 SWE as Constrained Optimization ... 3

Chapter 2 Ordinal Semantic Constraints... 5

2.1 Representing Knowledge By Ranking .. 5

2.2 Three Common Sense Rules ... 5

Chapter 3 SWE Toolkit ... 6

Chapter 4 SWE Applications .. 7

4.1 Word Similarity ... 7

4.1.1 Task description .. 7

4.1.2 SWE Demo Instruction ... 7

4.2 Sentence completion ... 9

4.2.1 Task description .. 9

4.2.2 SWE Demo Instruction ... 9

4.3 Name entity recognition .. 10

4.3.1 Task description .. 10

4.3.2 SWE Demo Instruction ... 11

4.4 Synonym selection .. 12

4.4.1 Task description .. 12

4.4.2 SWE Demo Instruction ... 12

5. Final Remarks .. 13

References .. 13

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

2

Abstract

SWE represents a general framework to incorporate semantic knowledge into the

popular data-driven learning process of word embeddings to improve the quality of

them. Under the SWE framework, semantic knowledge could be quantized as many

ordinal ranking inequalities and the learning of word vectors is formulated as a

constrained optimization problem. In detail, the data-derived objective function is

optimized subject to all ordinal knowledge inequality constraints extracted from

available knowledge resources such as Thesaurus, WordNet, knowledge graphs, etc.

We have demonstrated that this constrained optimization problem can be efficiently

solved by the stochastic gradient descent (SGD) algorithm, even for a large number of

inequality constraints. Experimental results on four standard NLP tasks, including

word similarity measure, sentence completion, name entity recognition, and the

TOEFL synonym selection, have all demonstrated that the quality of learned word

vectors can be significantly improved after semantic knowledge is incorporated as

inequality constraints during the learning process of word embeddings.

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

3

Chapter 1 Semantic Word Embedding

1.1 The Skip-gram moel

The skip-gram model is a recently proposed learning framework [10, 9] to learn

continuous word vectors from text corpora based on the aforementioned distributional

hypothesis, where each word in vocabulary (size of V) is mapped to a continuous

embedding space by looking up an embedding matrix (1)
W . And (1)

W is learned by

maximizing the prediction probability, calculated by another prediction matrix (2)
W ,

of its neighboring words within a context window. Given a sequence of training data,

denoted as 1 2 3, , ,..., Tw w w w with T words, the skip-gram model aims to maximize the

following objective function:

1 , 0

1
log (|)

T

t j t

t c j c j

Q p w w
T



    

   (1)

where c is the size of context windows, wt denotes the input central word and wt+j for

its neighbouring word. The skip-gram model computes the above conditional

probability (|)t j tp w w using the following softmax function:

 

 

(2) (1)

(2) (1)

1

exp
(|)

exp

t j t

t j t V

k tk

p w w











w w

w w
 (2)

where (1)

tw and (2)

kw denotes row vectors in matrices (1)
W and (2)

W , corresponding to

word tw and kw respectively.

1.2 SWE as Constrained Optimization

In the framework of SWE, each similarity ranking inequality involves a

triplet,  , ,i j k , of three words, , ,i j kw w w . Assuming the ordinal knowledge is

represented by a large number of such inequalities, denoted as the inequality set S .

For  , ,i j k S  , we have:

   (1) (1) (1) (1)

similarity(,) similarity(,)

sim , sim ,

i j i k

i j i k

w w w w

 w w w w

For notational simplicity, we denote  (1) (1)sim ,ij i js  w w hereafter.

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

4

Figure 1: The proposed semantic word embedding (SWE) learning framework (The left part

denotes the state-of-the-art skip-gram model; The right part represents the semantic constraints).

Next, we propose to use the following constrained optimization problem to learn

semantic word embeddings (SWE):

    
(1) (2)

(1) (2) (1) (2)

,

, arg max ,Q
W W

W W W W (3)

subject to

  , ,ij iks s i j k S   (4)

In this work, we formulate the above constrained optimization problem into an

unconstrained one by casting all the constraints as a penalty term in the objective

function. The penalty term can be expressed as follows:

  
 , ,

, ,
i j k S

D f i j k


  (5)

where the function  f  is a normalization function. We set it to be a hinge loss

function like    , , ik ijf i j k h s s  where    0max ,h x x with 0 denoting a

parameter to control the decision margin. Finally, the proposed semantic word

embedding (SWE) model aims to maximize the following combined objective

function:

 'Q Q D   (6)

where  is a control parameter to balance the contribution of the penalty term in the

optimization process.

In Figure 1, we show a diagram for the overall SWE learning framework to

incorporate semantic knowledge into the basic skip-gram word embeddings.

Comparing with the previous work in [15] and [2], the proposed SWE framework is

more general in terms of encoding the semantic knowledge for learning word

embeddings. It is straightforward to show that the work in [15, 17, 2] can be viewed

as some special cases under our SWE learning framework.

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

5

Chapter 2 Ordinal Semantic Constraints

2.1 Representing Knowledge By Ranking

Many types of lexical semantic knowledge can be quantitatively represented by a

large number of ranking inequalities such as:

 similarity(,) similarity(,)i j i kw w w w (7)

where
iw ,

jw and
kw denote any three words in vocabulary. For example, eq.(7) holds

if jw is a synonym of iw and kw is an antonym of iw . In general, the similarity between

a word and its synonymous word should be larger than the similarity between the

word and its antonymous word. Moreover, a particular word should be more similar to

the words belonging to the same semantic category as this word than other words

belonging to a different category. Besides, eq.(7) holds if iw and jw have shorter

distance in a semantic hierarchy than iw and kw do in the same hierarchy [7, 5].

2.2 Three Common Sense Rules

 Figure 2: An example of hyponym and hypernym.

 Synonym Antonym Rule: Similarities between a word and its synonymous words are

always larger than similarities between the word and its antonymous words. For example,

the similarity between foolish and stupid is expected to be bigger than the similarity

between foolish and clever, i.e., similarity(foolish, stupid) > similarity(foolish, clever).

 Semantic Category Rule: Similarities of words that belong to the same semantic

category would be larger than similarities of words that belong to different categories.

This rule refers to the idea of Fisher linear discriminant algorithm. A semantic category

may be defined as a synset in WordNet, a hypernym in a semantic hierarchy, or an entity

category in knowledge graphs. Figure 2 shows a simple example of the relationship

between hyponyms and hypernyms. From there, it is reasonable to assume the following

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

6

similarity inequality: similarity(Mallet, Plessor) > similarity(Mallet, Hacksaw).

 Semantic Hierarchy Rule: Similarities between words that have shorter distances in a

semantic hierarchy should be larger than similarities of words that have longer distances.

In this work, the semantic hierarchy refers to the hypernym and hyponym structure in

WordNet. From Figure 2, this rule may suggest several inequalities like:

similarity(Mallet, Hammer) > similarity(Mallet, Tool).

Chapter 3 SWE Toolkit

3.1 Download and Installation

The SWE toolkit is now released under the Apache License, Version 2.0. This

SWE toolkit is modified from the popular word2vec tool [link]. The toolkit includes

the SWE training code, semantic knowledge constraints, application datasets, tools

and scripts. For training SWE models and applying it for various NLP tasks, you need

download it firstly and unpack it.

 Download SWE Toolkit.

 Find more information on GitHub page SWE-GitHub.

The SWE toolkit relies on the Intel math kernel library (MKL, download) for

high efficiency. Once you have installed the MKL library, you can compile SWE as

follows:

Figure 3. SWE compile procedures.

$ cd bin

$ [/bin] make

g++ SWE_Train.c -o SWE_Train -lm -pthread -O3 -march=native -Wall -funroll-loops

-Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core

g++ SWE_Test_SentComplete.c -o SWE_Test_SentComplete -lm -pthread -O3 -march=native -Wall

-funroll-loops -Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core

g++ SWE_Test_WordSim.cpp -o SWE_Test_WordSim -lm -pthread -O3 -march=native -Wall

-funroll-loops -Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core

g++ SWE_Test_SynSel.cpp -o SWE_Test_SynSel -lm -pthread -O3 -march=native -Wall

-funroll-loops -Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core

https://code.google.com/p/word2vec/
http://home.ustc.edu.cn/~quanliu/SWE.zip
https://github.com/iunderstand/SWE
https://software.intel.com/en-us/intel-mkl/try-buy

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

7

3.2 Main Tools and Functions

There are four major tools for supporting model training and applications in the

SWE toolkit. Here are the detailed functions of each tool.

Table 1. SWE tool functions

Tool Name Functions

SWE_Train main tool, support SWE model as well as Skip-gram training.

SWE_Test_WordSim tool for applying word embeddings for word similarity.

SWE_Test_SentComplete tool for applying word embeddings for sentence completion

SWE_Test_SynSel tool for applying word embeddings for synonym selection.

In addition to the application for the above-mentioned word similarity, sentence

completion and synonym selection tasks, we apply the SWE word embeddings for the

popular name entity recognition task according to the work "Word representations: A

simple and general method for semi-supervised learning" (Turain, 2010). The

corresponding tools, datasets and scripts for implementing this process can all be

downloaded from CS.UIUC.

Chapter 4 SWE Applications

4.1 Word Similarity

4.1.1 Task description

Measuring word similarity is a traditional NLP task [13]. Here we compare

several word embedding models on a popular word similarity task, namely

WordSim-353 [3], which contains 353 English word pairs along with human-assigned

similarity scores, which measure the relatedness of each word pair on a scale from 0

(totally unrelated words) to 10 (very much related or identical words). The final

similarity score for each pair is the average across 13 to 16 human judges. When

evaluating word embeddings on this task, we measure the performance by calculating

the Spearman rank correlation between the human judgments and the similarity scores

computed based on the learned word embeddings.

4.1.2 SWE Demo Instruction

Here are the main steps for applying SWE word embeddings for word similarity

task.

http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

8

For a quick demo run, you may get similar evaluation results as follows.

Table 2. Demo: Spearman results on the WordSim-353 Task.

 Word Embeddings Result

TEXT8

Skip-gram 0.4666

SWE + Synon-Anton 0.5266

SWE + Hyper-Hypon 0.5083

SWE + Both 0.5449

Demo: Semantic word embeddings for word similarity task

Step 1: prepare the training corpus and vocabulary

$ cd corpora

$ [/corpora] mkdir TEXT8

$ cd TEXT8

$ [/corpora/TEXT8] perl SWE_script_LearnVocab.pl

After getting all the words with occ frequency, cut them by 5 times.

training corpus: text8.txt

training vocabulary: text8.wordfreq.cut5

Step 2: prepare the semantic constraint collections

$ cd semantics

$ [/semantics] mkdir TEXT8

$ cd TEXT8

$ [/semantics/TEXT8] perl SWE_script_IneqFilterByVocab.pl

You could find three semantic constraint sets:

(1) Synon-Anton: SemWE.EN.KnowDB.SA1.inTEXT8

(2) Hyper-Hypon: SemWE.EN.KnowDB.HH1.inTEXT8

(3) Both: SemWE.EN.KnowDB.COM1.inTEXT8

Step 3: setting word embedding parameters and training

$ cd task1_wordsim

$ [/task1_wordsim] vim SWE_Train_TEXT8.pl

Key parameter: @inter_param = (0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5);

After setting the correct paths and parameters, you could the train SWE models.

$ [/task1_wordsim] perl SWE_Train_TEXT8.pl

Step 4: model evaluation

$ [/task1_wordsim] perl SWE_Test_WordSim.pl

This script would invoke the tool SWE_Test_WordSim in the bin directory.

Final evaluation result file: EmbedVector_TEXT8.WordSim353.result

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

9

From the results in Table 2, we can see that the proposed SWE word embedding

model can achieve consistent improvements over the baseline skip-gram model. In

order to obtain state-of-the-art performances on this task, please use larger training

corpora, such as the popular English Wikipedia, Google 1 Billion LM training corpus,

etc.

4.2 Sentence completion

4.2.1 Task description

The Microsoft sentence completion challenge has recently been introduced as a

standard benchmark task for language modeling and other NLP techniques [16]. This

task consists of 1040 sentences, each of which misses one word. The goal is to select

a word that is the most coherent with the rest of the sentence, from a list of five

candidates. Many NLP techniques have already been reported on this task, including

N-gram model and LSA-based model proposed in [16], log-bilinear model [12],

recurrent neural networks (RNN) [11], the skip-gram model [9], a combination of the

skip-gram and RNN model, and a knowledge enhanced word embedding model

proposed by Bian et. al. [1].

4.2.2 SWE Demo Instruction

To run a quick demo of applying SWE model for sentence completion, we follow

the the same procedure as in [9]. The training corpus is obtained from the

state-of-the-art work [16]. Here are the major steps for running this demo.

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

10

The quick demo results are:

 System Acc

Demo run

Skip-gram 31.8

SWE + Synon-Anton 40.3

SWE + Hyper-Hypon 40.0

SWE + Both 41.4

Table 3. Demo: Results on Sentence Completion Task.

In Table 3, we have shown the sentence completion accuracy on this task for

various word embedding models. We can see that the proposed SWE model has

achieved considerable improvements over the baseline skip-gram model.

4.3 Name entity recognition

4.3.1 Task description

Applying SWE word embeddings for the standard CoNLL03 name entity

recognition (NER) task [14]. The CoNLL03 NER dataset is drawn from the Reuters

newswire. The training set contains 204K words (14K sentences, 946 documents), the

test set contains 46K words (3.5K sentences, 231 documents), and the development

set contains 51K words (3.3K sentences, 216 documents).

Demo: Semantic word embeddings for sentence completion task

Step 1 and Step 2 are the same to the aforementioned procedures in WordSim-353 task.

(a) Training corpus: /corpora/Holmes/Holmes_Training_Data.txt

(b) Training vocabulary: /corpora/Holmes/Holmes_Training_Data.txt.wordfreq.cut5

(1) Semantic constraint Synon-Anton: SemWE.EN.KnowDB.SA1.inHolmes

(2) Semantic constraint Hyper-Hypon: SemWE.EN.KnowDB.HH1.inHolmes

(3) Semantic constraint Both: SemWE.EN.KnowDB.COM1.inHolmes

Step 3: setting word embedding parameters and training

$ cd task2_microsoft

$ [/task2_microsoft] vim SWE_Train_Holmes.pl

Key parameter: @inter_param = (0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5);

After setting the correct paths and parameters, you could the train SWE models.

$ [/task2_microsoft] perl SWE_Train_Holmes.pl

Step 4: model evaluation

$ [/task1_wordsim] perl SWE_Test_SentCompletion.pl

This script would invoke the tool SWE_Test_SentComplete in the bin directory.

Final evaluation result file: EmbedVector_Holmes.Holmes.result

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

11

4.3.2 SWE Demo Instruction

To conduct experiments on this task, we use the same configurations as in [14],

including the used training algorithm, the baseline discrete features and so on. The

training corpus contains one year of Reuters English newswire from RCV1, from

August 1996 to August 1997, having about 810,000 news stories [8].

 The training corpus RCV1 is available at NIST-RCV1.

 Configuration tools are available at CS.UIUC. You can also download them

directly at NerACL2010_Experiments.zip.

For example, the quick demo results are:

 System Dev Test MUC7

Others C&W 92.3 87.9 75.7

Demo run

Skip-gram 92.6 88.0 77.1

SWE + Synon-Anton 92.5 88.5 77.3

SWE + Hyper-Hypon 92.5 88.4 77.4

SWE + Both 92.5 88.2 77.8

Table 4. Demo: F1 scores on the CoNLL03 NER task.

Demo: Semantic word embeddings for name entity recognition task

Step 1 and Step 2 are the same to the aforementioned procedures in WordSim-353 task.

(a) Training corpus: /corpora/Reuters/reuters.rcv1.corpus

(b) Training vocabulary: /corpora/Reuters/reuters.rcv1.corpus.wordfreq.cut5

(1) Semantic constraint Synon-Anton: SemWE.EN.KnowDB.SA1.inReuters

(2) Semantic constraint Hyper-Hypon: SemWE.EN.KnowDB.HH1.inReuters

(3) Semantic constraint Both: SemWE.EN.KnowDB.COM1.inReuters

Step 3: setting word embedding parameters and training

$ cd task3_conll03ner

$ [/task3_conll03ner] vim SWE_Train_ReutersNER.pl

Key parameter: @inter_param = (0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5);

After setting the correct paths and parameters, you could the train SWE models.

$ [/task3_conll03ner] perl SWE_Train_ReutersNER.pl

Step 4: applying SWE models for NER task, configuration.

Before running this script, you need to download the "NerACL2010_Experiments.zip" package from

CS.UIUC. After that, unpacking it at the "task3_conll03ner" directory. Then copying subdir Cw50Dim0.3 as

to NerACL2010_Experiments/bin.

Not easy? Try to download the package here (NerACL2010_Experiments.zip) and unpack it.

$ [/task3_conll03ner] perl SWE_Test_ConfigForNER.pl

Step 5: manage all the SWE experimental results

$ [/task3_conll03ner] perl SWE_script_ManageResult.pl

http://trec.nist.gov/data/reuters/reuters.html
http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php
http://home.ustc.edu.cn/~quanliu/NerACL2010_Experiments.zip
http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php
http://home.ustc.edu.cn/~quanliu/NerACL2010_Experiments.zip

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

12

From the quick demo experimental results shown in Table 4, we find the SWE

model can achieve better improvements on the MUC7 task than on the test set. To

make further investigations, it is necessary to consider more semantic constraints for

improving the SWE performances on NER task.

4.4 Synonym selection

4.4.1 Task description

The goal of the popular synonym selection task is to select, from a list of

candidate words, the semantically closest word for each given target word. The

dataset we use for this task is the standard TOEFL dataset [6], which contains 80

questions. Each question consists of a target word along with 4 candidate lexical

substitutes for selection. The evaluation criterion on this task is the synonym selection

accuracy which indicates how many synonyms are correctly selected for all those

questions.

4.4.2 SWE Demo Instruction

The major steps for applying SWE word embeddings for synonym selection task

are exactly the same as the steps proposed in the word similarity task.

Corpus Model Accuracy (%)

TEXT8 Skip-gram 50.00

SWE + Synon-Anton 55.00

SWE + Hyper-Hypon 53.75

SWE + Both 55.00

Table 5. Demo: The TOEFL synonym selection task.

In Table 5, we have shown the experimental results for different word embedding

models. From the experimental results in Table 5, we can see that the SWE model

achieves consistent improvements over the Skip-gram model on the synonym

selection task. Again, we suggest to use larger training corpora for conducting more

experiments under the SWE framework.

Demo: Semantic word embeddings for synonym selection task

For simplicity, here we use the same model trained in word similarity application.

Step for model evaluation

$ cd task4_synselect

$ [/task4_synselect] perl SWE_Test_SynSel.pl ../task1_wordsim/EmbedVector_TEXT8

This script would invoke the tool SWE_Test_SynSel in the bin directory.

Final evaluation result file: TOEFL80.result

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

13

5. Final Remarks

Word embedding models with good semantic representations are quite invaluable to

many natural language processing tasks. However, the current data-driven methods

that learn word vectors from corpora based on the distributional hypothesis tend to

suffer from some major limitations. The proposed SWE is a general and flexible

framework for incorporating various types of semantic knowledge into the popular

data-driven learning procedure. The main contribution of SWE is to represent

semantic knowledge as a number of ordinal similarity inequalities as well as to

formulate the entire learning process as a constrained optimization problem.

References

 [1] J. Bian, B. Gao and T. Liu (2014) Knowledge-powered deep learning for word embedding.

Machine Learning and Knowledge Discovery in Databases, pp. 132–148. Cited by: 4.2.1.

 [2] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy and N. A. Smith (2014) Retrofitting

word vectors to semantic lexicons. Cited by: 1.2.

 [3] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman and E. Ruppin

(2001) Placing search in context: the concept revisited. pp. 406–414. Cited by: 4.1.1.

 [4] R. A. Fisher (1936) The use of multiple measurements in taxonomic problems. Annals of

eugenics 7 (2), pp. 179–188. Cited by: 2.2.

 [5] D. Jurafsky and J. H. Martin (2000) Speech & language processing. Pearson Education

India. Cited by: 2.1.

 [6] T. K. Landauer and S. T. Dumais (1997) A solution to plato’s problem: the latent semantic

analysis theory of acquisition, induction, and representation of knowledge.. Psychological

review 104 (2), pp. 211. Cited by: 4.4.1.

 [7] C. Leacock and M. Chodorow (1998) Combining local context and wordnet similarity for

word sense identification. WordNet: An electronic lexical database 49 (2), pp. 265–283. Cited

by: 2.1.

 [8] D. D. Lewis, Y. Yang, T. G. Rose and F. Li (2004) RCV1: a new benchmark collection for

text categorization research. Journal of Machine Learning Research 5, pp. 361–397. Cited by:

4.3.2.

 [9] T. Mikolov, K. Chen, G. Corrado and J. Dean (2013) Efficient estimation of word

representations in vector space. Cited by: 1.1, 4.2.1, 4.2.2.

 [10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean (2013) Distributed

representations of words and phrases and their compositionality. pp. 3111–3119. Cited by: 1.1.

 [11] T. Mikolov (2012) Statistical language models based on neural networks. Ph.D. Thesis,

Ph. D. thesis, Brno University of Technology. Cited by: 4.2.1.

 [12] A. Mnih and Y. W. Teh (2012) A fast and simple algorithm for training neural

probabilistic language models. Cited by: 4.2.1.

file:///E:/CrazyJune2015/HomePage/research-SWE.html%23S4.SS1.SSS1.p1

Semantic Word Embedding (SWE) reference manual http://home.ustc.edu.cn/~quanliu/

14

 [13] H. Rubenstein and J. B. Goodenough (1965) Contextual correlates of synonymy.

Communications of the ACM 8 (10), pp. 627–633. Cited by: 4.1.1.

 [14] J. Turian, L. Ratinov and Y. Bengio (2010) Word representations: a simple and general

method for semi-supervised learning. pp. 384–394. Cited by: 4.3.1, 4.3.2.

 [15] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu and T. Liu (2014) RC-net: a general

framework for incorporating knowledge into word representations. pp. 1219–1228. Cited by:

1.2.

 [16] G. Zweig and C. J. Burges (2011) The microsoft research sentence completion challenge.

Technical report Technical Report MSR-TR-2011-129, Microsoft. Cited by: 4.2.1, 4.2.2.

 [17] G. Zweig (2014) Explicit representation of antonymy in language modelling. Technical

report Technical Report MSR-TR-2014-52, Microsoft. Cited by: 1.2.

