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Abstract 

 

SWE represents a general framework to incorporate semantic knowledge into the 

popular data-driven learning process of word embeddings to improve the quality of 

them. Under the SWE framework, semantic knowledge could be quantized as many 

ordinal ranking inequalities and the learning of word vectors is formulated as a 

constrained optimization problem. In detail, the data-derived objective function is 

optimized subject to all ordinal knowledge inequality constraints extracted from 

available knowledge resources such as Thesaurus, WordNet, knowledge graphs, etc. 

We have demonstrated that this constrained optimization problem can be efficiently 

solved by the stochastic gradient descent (SGD) algorithm, even for a large number of 

inequality constraints. Experimental results on four standard NLP tasks, including 

word similarity measure, sentence completion, name entity recognition, and the 

TOEFL synonym selection, have all demonstrated that the quality of learned word 

vectors can be significantly improved after semantic knowledge is incorporated as 

inequality constraints during the learning process of word embeddings. 
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Chapter 1  Semantic Word Embedding 

 

1.1  The Skip-gram moel 

The skip-gram model is a recently proposed learning framework [10, 9] to learn 

continuous word vectors from text corpora based on the aforementioned distributional 

hypothesis, where each word in vocabulary (size of V) is mapped to a continuous 

embedding space by looking up an embedding matrix (1)
W . And (1)

W is learned by 

maximizing the prediction probability, calculated by another prediction matrix (2)
W , 

of its neighboring words within a context window. Given a sequence of training data, 

denoted as 1 2 3, , ,..., Tw w w w with T words, the skip-gram model aims to maximize the 

following objective function: 
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where c is the size of context windows, wt denotes the input central word and wt+j for 

its neighbouring word. The skip-gram model computes the above conditional 

probability ( | )t j tp w w using the following softmax function: 
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where (1)

tw and (2)

kw denotes row vectors in matrices (1)
W and (2)

W , corresponding to 

word tw and kw respectively. 

 

1.2  SWE as Constrained Optimization 

 

In the framework of SWE, each similarity ranking inequality involves a 

triplet,  , ,i j k , of three words, , ,i j kw w w . Assuming the ordinal knowledge is 

represented by a large number of such inequalities, denoted as the inequality set S . 

For  , ,i j k S  , we have: 

 
   (1) (1) (1) (1)

similarity( , ) similarity( , )

sim , sim ,

i j i k

i j i k

w w w w

 w w w w
  

For notational simplicity, we denote  (1) (1)sim ,ij i js  w w  hereafter. 
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Figure 1: The proposed semantic word embedding (SWE) learning framework (The left part 

denotes the state-of-the-art skip-gram model; The right part represents the semantic constraints). 

 

Next, we propose to use the following constrained optimization problem to learn 

semantic word embeddings (SWE): 

    
(1) (2)

(1) (2) (1) (2)

,

, arg max ,Q
W W

W W W W  (3) 

subject to 

  , ,ij iks s i j k S    (4) 

In this work, we formulate the above constrained optimization problem into an 

unconstrained one by casting all the constraints as a penalty term in the objective 

function. The penalty term can be expressed as follows: 

  
 , ,

, ,
i j k S

D f i j k


   (5) 

where the function  f   is a normalization function. We set it to be a hinge loss 

function like    , , ik ijf i j k h s s  where    0max ,h x x with 0 denoting a 

parameter to control the decision margin. Finally, the proposed semantic word 

embedding (SWE) model aims to maximize the following combined objective 

function: 

 'Q Q D    (6) 

where  is a control parameter to balance the contribution of the penalty term in the 

optimization process. 

In Figure 1, we show a diagram for the overall SWE learning framework to 

incorporate semantic knowledge into the basic skip-gram word embeddings. 

Comparing with the previous work in [15] and [2], the proposed SWE framework is 

more general in terms of encoding the semantic knowledge for learning word 

embeddings. It is straightforward to show that the work in [15, 17, 2] can be viewed 

as some special cases under our SWE learning framework. 
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Chapter 2  Ordinal Semantic Constraints 

 

2.1  Representing Knowledge By Ranking 

 

Many types of lexical semantic knowledge can be quantitatively represented by a 

large number of ranking inequalities such as: 

 similarity( , ) similarity( , )i j i kw w w w  (7) 

where 
iw ,

jw and
kw denote any three words in vocabulary. For example, eq.(7) holds 

if jw is a synonym of iw and kw is an antonym of iw . In general, the similarity between 

a word and its synonymous word should be larger than the similarity between the 

word and its antonymous word. Moreover, a particular word should be more similar to 

the words belonging to the same semantic category as this word than other words 

belonging to a different category. Besides, eq.(7) holds if iw and jw have shorter 

distance in a semantic hierarchy than iw and kw  do in the same hierarchy [7, 5]. 

 

2.2  Three Common Sense Rules 

 

 

 Figure 2: An example of hyponym and hypernym. 

 

 Synonym Antonym Rule: Similarities between a word and its synonymous words are 

always larger than similarities between the word and its antonymous words. For example, 

the similarity between foolish and stupid is expected to be bigger than the similarity 

between foolish and clever, i.e., similarity(foolish, stupid) > similarity(foolish, clever). 

 

 Semantic Category Rule: Similarities of words that belong to the same semantic 

category would be larger than similarities of words that belong to different categories. 

This rule refers to the idea of Fisher linear discriminant algorithm. A semantic category 

may be defined as a synset in WordNet, a hypernym in a semantic hierarchy, or an entity 

category in knowledge graphs. Figure 2 shows a simple example of the relationship 

between hyponyms and hypernyms. From there, it is reasonable to assume the following 
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similarity inequality: similarity(Mallet, Plessor) > similarity(Mallet, Hacksaw). 

 

 Semantic Hierarchy Rule: Similarities between words that have shorter distances in a 

semantic hierarchy should be larger than similarities of words that have longer distances. 

In this work, the semantic hierarchy refers to the hypernym and hyponym structure in 

WordNet. From Figure 2, this rule may suggest several inequalities like: 

similarity(Mallet, Hammer) > similarity(Mallet, Tool).  

 

 

 

Chapter 3  SWE Toolkit 

 

3.1 Download and Installation 

The SWE toolkit is now released under the Apache License, Version 2.0. This 

SWE toolkit is modified from the popular word2vec tool [link]. The toolkit includes 

the SWE training code, semantic knowledge constraints, application datasets, tools 

and scripts. For training SWE models and applying it for various NLP tasks, you need 

download it firstly and unpack it.  

 Download SWE Toolkit.  

 Find more information on GitHub page SWE-GitHub.  

The SWE toolkit relies on the Intel math kernel library (MKL, download) for 

high efficiency. Once you have installed the MKL library, you can compile SWE as 

follows: 

 

Figure 3. SWE compile procedures. 

 

$ cd bin 

$ [/bin] make 

g++ SWE_Train.c -o SWE_Train -lm -pthread -O3 -march=native -Wall -funroll-loops 

-Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64 

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core 

g++ SWE_Test_SentComplete.c -o SWE_Test_SentComplete -lm -pthread -O3 -march=native -Wall 

-funroll-loops -Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64 

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core 

g++ SWE_Test_WordSim.cpp -o SWE_Test_WordSim -lm -pthread -O3 -march=native -Wall 

-funroll-loops -Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64 

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core 

g++ SWE_Test_SynSel.cpp -o SWE_Test_SynSel -lm -pthread -O3 -march=native -Wall 

-funroll-loops -Wno-unused-result -I/opt/intel/mkl/include -L/opt/intel/mkl/lib/intel64 

-L/opt/intel/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lmkl_core 

https://code.google.com/p/word2vec/
http://home.ustc.edu.cn/~quanliu/SWE.zip
https://github.com/iunderstand/SWE
https://software.intel.com/en-us/intel-mkl/try-buy
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3.2 Main Tools and Functions 

There are four major tools for supporting model training and applications in the 

SWE toolkit. Here are the detailed functions of each tool.  

 

Table 1. SWE tool functions 

Tool Name Functions 

SWE_Train main tool, support SWE model as well as Skip-gram training. 

SWE_Test_WordSim tool for applying word embeddings for word similarity. 

SWE_Test_SentComplete tool for applying word embeddings for sentence completion 

SWE_Test_SynSel tool for applying word embeddings for synonym selection. 

  

In addition to the application for the above-mentioned word similarity, sentence 

completion and synonym selection tasks, we apply the SWE word embeddings for the 

popular name entity recognition task according to the work "Word representations: A 

simple and general method for semi-supervised learning" (Turain, 2010). The 

corresponding tools, datasets and scripts for implementing this process can all be 

downloaded from CS.UIUC. 

 

 

 

Chapter 4  SWE Applications 

 

4.1  Word Similarity 

 

4.1.1 Task description 

Measuring word similarity is a traditional NLP task [13]. Here we compare 

several word embedding models on a popular word similarity task, namely 

WordSim-353 [3], which contains 353 English word pairs along with human-assigned 

similarity scores, which measure the relatedness of each word pair on a scale from 0 

(totally unrelated words) to 10 (very much related or identical words). The final 

similarity score for each pair is the average across 13 to 16 human judges. When 

evaluating word embeddings on this task, we measure the performance by calculating 

the Spearman rank correlation between the human judgments and the similarity scores 

computed based on the learned word embeddings. 

 

4.1.2 SWE Demo Instruction 

Here are the main steps for applying SWE word embeddings for word similarity 

task.  

 

http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php
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For a quick demo run, you may get similar evaluation results as follows.  

 

Table 2. Demo: Spearman results on the WordSim-353 Task. 

 Word Embeddings Result 

 

 

TEXT8 

Skip-gram 0.4666 

SWE + Synon-Anton  0.5266 

SWE + Hyper-Hypon  0.5083 

SWE + Both 0.5449 

 

Demo: Semantic word embeddings for word similarity task 

Step 1: prepare the training corpus and vocabulary 

$ cd corpora 

$ [/corpora] mkdir TEXT8 

$ cd TEXT8 

$ [/corpora/TEXT8] perl SWE_script_LearnVocab.pl 

After getting all the words with occ frequency, cut them by 5 times. 

training corpus: text8.txt 

training vocabulary: text8.wordfreq.cut5 

 

Step 2: prepare the semantic constraint collections 

$ cd semantics 

$ [/semantics] mkdir TEXT8 

$ cd TEXT8 

$ [/semantics/TEXT8] perl SWE_script_IneqFilterByVocab.pl 

You could find three semantic constraint sets: 

(1) Synon-Anton: SemWE.EN.KnowDB.SA1.inTEXT8 

(2) Hyper-Hypon: SemWE.EN.KnowDB.HH1.inTEXT8 

(3) Both: SemWE.EN.KnowDB.COM1.inTEXT8 

 

Step 3: setting word embedding parameters and training 

$ cd task1_wordsim 

$ [/task1_wordsim] vim SWE_Train_TEXT8.pl 

Key parameter: @inter_param = (0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5); 

After setting the correct paths and parameters, you could the train SWE models.  

$ [/task1_wordsim] perl SWE_Train_TEXT8.pl 

 

Step 4: model evaluation 

$ [/task1_wordsim] perl SWE_Test_WordSim.pl 

This script would invoke the tool SWE_Test_WordSim in the bin directory. 

Final evaluation result file: EmbedVector_TEXT8.WordSim353.result 
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From the results in Table 2, we can see that the proposed SWE word embedding 

model can achieve consistent improvements over the baseline skip-gram model. In 

order to obtain state-of-the-art performances on this task, please use larger training 

corpora, such as the popular English Wikipedia, Google 1 Billion LM training corpus, 

etc. 

 

4.2  Sentence completion 

 

4.2.1 Task description 

The Microsoft sentence completion challenge has recently been introduced as a 

standard benchmark task for language modeling and other NLP techniques [16]. This 

task consists of 1040 sentences, each of which misses one word. The goal is to select 

a word that is the most coherent with the rest of the sentence, from a list of five 

candidates. Many NLP techniques have already been reported on this task, including 

N-gram model and LSA-based model proposed in [16], log-bilinear model [12], 

recurrent neural networks (RNN) [11], the skip-gram model [9], a combination of the 

skip-gram and RNN model, and a knowledge enhanced word embedding model 

proposed by Bian et. al. [1]. 

 

4.2.2 SWE Demo Instruction 

To run a quick demo of applying SWE model for sentence completion, we follow 

the the same procedure as in [9]. The training corpus is obtained from the 

state-of-the-art work [16]. Here are the major steps for running this demo.  
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The quick demo results are: 

 

 System Acc 

 

Demo run 

Skip-gram 31.8 

SWE + Synon-Anton  40.3 

SWE + Hyper-Hypon  40.0 

SWE + Both 41.4 

Table 3. Demo: Results on Sentence Completion Task. 

In Table 3, we have shown the sentence completion accuracy on this task for 

various word embedding models. We can see that the proposed SWE model has 

achieved considerable improvements over the baseline skip-gram model. 

 

 

4.3  Name entity recognition 

 

4.3.1 Task description 

Applying SWE word embeddings for the standard CoNLL03 name entity 

recognition (NER) task [14]. The CoNLL03 NER dataset is drawn from the Reuters 

newswire. The training set contains 204K words (14K sentences, 946 documents), the 

test set contains 46K words (3.5K sentences, 231 documents), and the development 

set contains 51K words (3.3K sentences, 216 documents).  

 

Demo: Semantic word embeddings for sentence completion task 

Step 1 and Step 2 are the same to the aforementioned procedures in WordSim-353 task. 

(a) Training corpus: /corpora/Holmes/Holmes_Training_Data.txt 

(b) Training vocabulary: /corpora/Holmes/Holmes_Training_Data.txt.wordfreq.cut5 

(1) Semantic constraint Synon-Anton: SemWE.EN.KnowDB.SA1.inHolmes 

(2) Semantic constraint Hyper-Hypon: SemWE.EN.KnowDB.HH1.inHolmes 

(3) Semantic constraint Both: SemWE.EN.KnowDB.COM1.inHolmes 

 

Step 3: setting word embedding parameters and training 

$ cd task2_microsoft 

$ [/task2_microsoft] vim SWE_Train_Holmes.pl 

Key parameter: @inter_param = (0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5); 

After setting the correct paths and parameters, you could the train SWE models.  

$ [/task2_microsoft] perl SWE_Train_Holmes.pl 

 

Step 4: model evaluation 

$ [/task1_wordsim] perl SWE_Test_SentCompletion.pl 

This script would invoke the tool SWE_Test_SentComplete in the bin directory. 

Final evaluation result file: EmbedVector_Holmes.Holmes.result 
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4.3.2 SWE Demo Instruction 

To conduct experiments on this task, we use the same configurations as in [14], 

including the used training algorithm, the baseline discrete features and so on. The 

training corpus contains one year of Reuters English newswire from RCV1, from 

August 1996 to August 1997, having about 810,000 news stories [8]. 

 The training corpus RCV1 is available at NIST-RCV1.  

 Configuration tools are available at CS.UIUC. You can also download them 

directly at NerACL2010_Experiments.zip. 

 

For example, the quick demo results are: 

 System Dev Test MUC7 

Others  C&W  92.3 87.9 75.7 

 

Demo run  

Skip-gram  92.6 88.0 77.1 

SWE + Synon-Anton  92.5 88.5 77.3 

SWE + Hyper-Hypon  92.5 88.4 77.4 

SWE + Both  92.5 88.2 77.8 

Table 4. Demo: F1 scores on the CoNLL03 NER task. 

Demo: Semantic word embeddings for name entity recognition task 

Step 1 and Step 2 are the same to the aforementioned procedures in WordSim-353 task. 

(a) Training corpus: /corpora/Reuters/reuters.rcv1.corpus 

(b) Training vocabulary: /corpora/Reuters/reuters.rcv1.corpus.wordfreq.cut5 

(1) Semantic constraint Synon-Anton: SemWE.EN.KnowDB.SA1.inReuters 

(2) Semantic constraint Hyper-Hypon: SemWE.EN.KnowDB.HH1.inReuters 

(3) Semantic constraint Both: SemWE.EN.KnowDB.COM1.inReuters 

 

Step 3: setting word embedding parameters and training 

$ cd task3_conll03ner 

$ [/task3_conll03ner] vim SWE_Train_ReutersNER.pl 

Key parameter: @inter_param = (0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5); 

After setting the correct paths and parameters, you could the train SWE models.  

$ [/task3_conll03ner] perl SWE_Train_ReutersNER.pl 

 

Step 4: applying SWE models for NER task, configuration. 

Before running this script, you need to download the "NerACL2010_Experiments.zip" package from 

CS.UIUC. After that, unpacking it at the "task3_conll03ner" directory. Then copying subdir Cw50Dim0.3 as 

to NerACL2010_Experiments/bin. 

Not easy? Try to download the package here (NerACL2010_Experiments.zip) and unpack it. 

$ [/task3_conll03ner] perl SWE_Test_ConfigForNER.pl 

 

Step 5: manage all the SWE experimental results 

$ [/task3_conll03ner] perl SWE_script_ManageResult.pl 

http://trec.nist.gov/data/reuters/reuters.html
http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php
http://home.ustc.edu.cn/~quanliu/NerACL2010_Experiments.zip
http://cogcomp.cs.illinois.edu/Data/ACL2010_NER_Experiments.php
http://home.ustc.edu.cn/~quanliu/NerACL2010_Experiments.zip
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From the quick demo experimental results shown in Table 4, we find the SWE 

model can achieve better improvements on the MUC7 task than on the test set. To 

make further investigations, it is necessary to consider more semantic constraints for 

improving the SWE performances on NER task. 

 

4.4  Synonym selection 

 

4.4.1 Task description 

The goal of the popular synonym selection task is to select, from a list of 

candidate words, the semantically closest word for each given target word. The 

dataset we use for this task is the standard TOEFL dataset [6], which contains 80 

questions. Each question consists of a target word along with 4 candidate lexical 

substitutes for selection. The evaluation criterion on this task is the synonym selection 

accuracy which indicates how many synonyms are correctly selected for all those 

questions.  

 

4.4.2 SWE Demo Instruction 

The major steps for applying SWE word embeddings for synonym selection task 

are exactly the same as the steps proposed in the word similarity task.  

 

 

 

Corpus Model Accuracy (%) 

TEXT8 Skip-gram 50.00 

SWE + Synon-Anton  55.00 

SWE + Hyper-Hypon  53.75 

SWE + Both 55.00 

Table 5. Demo: The TOEFL synonym selection task. 

In Table 5, we have shown the experimental results for different word embedding 

models. From the experimental results in Table 5, we can see that the SWE model 

achieves consistent improvements over the Skip-gram model on the synonym 

selection task. Again, we suggest to use larger training corpora for conducting more 

experiments under the SWE framework. 

 

 

Demo: Semantic word embeddings for synonym selection task 

For simplicity, here we use the same model trained in word similarity application. 

Step for model evaluation 

$ cd task4_synselect 

$ [/task4_synselect] perl SWE_Test_SynSel.pl ../task1_wordsim/EmbedVector_TEXT8 

This script would invoke the tool SWE_Test_SynSel in the bin directory. 

Final evaluation result file: TOEFL80.result 
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5. Final Remarks 

Word embedding models with good semantic representations are quite invaluable to 

many natural language processing tasks. However, the current data-driven methods 

that learn word vectors from corpora based on the distributional hypothesis tend to 

suffer from some major limitations. The proposed SWE is a general and flexible 

framework for incorporating various types of semantic knowledge into the popular 

data-driven learning procedure. The main contribution of SWE is to represent 

semantic knowledge as a number of ordinal similarity inequalities as well as to 

formulate the entire learning process as a constrained optimization problem. 
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