
Entity Hierarchy Embedding:
Supplementary Material

1 Proof of Theorem 1

In this section we prove Theorem 1 (Section 2.2):

Theorem 1. ∀h ∈ Ae ∩ Ae′ , h ∈ Qe,e′ iff it satisfies the two conditions: (1)
|Ch ∩ (Ae ∪ Ae′) | ≥ 2; (2) ∃a, b ∈ Ch ∩ (Ae ∪ Ae′) s.t. ta 6= tb.

Recall that Qe,e′ is the set of common ancestors of entity e and e′ that are
turning nodes of any e → e′ paths; Ae is the ancestor nodes of entity e (including
e itself); for a node h ∈ Ae ∪Ae′ , its critical node th is the nearest (w.r.t the length
of the shortest path) descendant of h (including h itself) that is in Qe,e′ ∪ {e, e′};
Ch be the set of immediate child nodes of h.

Lemma 2. ∀h ∈ Ae ∩ Ae′ , th ∈ Qe,e′ .

Proof. h ∈ Ae ∩ Ae′ ⇒ (h ∈ Ae) ∧ (h ∈ Ae′).
As h ∈ Ae, there’s path e → · · · → h where the consecutive nodes are (child,

parent) pairs. Similarly, there exists path h → · · · → e′ where the consecutive
nodes are (parent, child) pairs. Denote the set of intersections of the two paths as
I. Because the two paths intersects at h, I 6= φ.

Note that the nodes in the intersection set are also in the path h→ · · · → e′, so
we can sort the nodes in I according to the topological order in path h→ · · · → e′.
Denote the topologically lowest node in I as t. As t is in the intersection set of
two paths, there exists path e → · · · → t where the consecutive nodes are (child,
parent) pairs and path t→ · · · → e′ where the consecutive nodes are (parent, child)
pairs. If the two paths e→ · · · → t and t→ · · · → e′ have any intersections except
for t, then the intersection will be topologically lower than t, which contradicts the
definition of t. So paths e → · · · → t and t → · · · → e′ have intersection only at
t, so t is a turning node. So Qe,e′ 6= φ. According to the construction of t, t is a
descendant of h, therefore th ∈ Qe,e′ .

We next prove Theorem 1.
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Figure 1: Illustration for Lemma 2. The topologically lowest intersection node is a
turning node, which is also a descendant of h.

Proof. Sufficiency: Note that e, e′ /∈ Qe,e′ , we prove by enumerating possible
situations: (i) ta = e, tb = e′, (ii) ta = e, tb ∈ Qe,e′ , (iii) ta, tb ∈ Qe,e′ . Case
ta = e, tb = e′ is equivalent to case (i) if we swap e and e′, and the cases ta =
e′, tb ∈ Qe,e′ , ta ∈ Qe,e′ , tb = e(e′) are equivalent to case (ii) if we swap the
notations for variables a, b, e, e′ properly. So the proof for cases (i), (ii) and (iii) is
sufficient. An illustration of the cases is provided in Figure 2.
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Figure 2: Three cases: (i) ta = e, tb = e′; (ii) ta = e, tb ∈ Qe,e′ ; (iii) ta, tb ∈ Qe,e′ .

(i) ta = e, tb = e′:
As ta = e, there’s a path e → · · · → a → h where the consecutive nodes
are (child, parent) pairs. Similarly, there’s a path h → b → · · · → e′ where
the consecutive nodes are (parent, child) pairs. The above two paths only
intersect at h, otherwise as a is the topologically highest node in path e →
· · · → a → h except for h, and e′ is the topologically lowest node in path
h → b → · · · → e′, e′ would be a descendant of a. According to Lemma 2,
ta ∈ Qe,e′ , which contradicts ta = e. So the two paths only intersect at h,
and we can combine the two paths to construct a valid path e→ · · · → a→
h→ b→ · · · → e′, yielding h as a turning node.
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(ii) ta = e, tb ∈ Qe,e′ :
ta = e ⇒ ∃e → · · · → a → h where the consecutive nodes are (child,
parent) pairs. As tb ∈ Qe,e′ , there exists path h → b → · · · → tb →
· · · → e′ where the consecutive nodes are (parent, child) pairs. If the two
paths e → · · · → a → h and h → b → · · · → tb → · · · → e′ has any
intersections except for h, then e′ will be a descendant of a, thus a ∈ Ae∪Ae′ .
According to Lemma 2, ta ∈ Qe,e′ , which contradicts the assumption that
ta = e /∈ Qe,e′ . So path e → · · · → a → h → b → · · · → tb → · · · → e′ is
a valid path, yielding h as a turning node.

(iii) ta, tb ∈ Qe,e′ :
First of all, we prove that there exists path e(e′) → · · · → ta where the con-
secutive nodes are (child, parent) pairs and path tb → · · · → e′(e) where the
consecutive nodes are (parent, child) pairs and the two paths do not intersect
with each other. If tb → · · · → e′ does not intersect with e → · · · → ta
(the existence of the paths is due to the definition of turning node), we’ve
already got the construction. Otherwise, if tb → · · · → e′ intersects with
ta → · · · → e′ at x before it intersects with e → · · · → ta, the path
e → · · · → ta and path tb → · · · → x → · · · → e′ where the part
x → · · · → e′ is subpath of ta → · · · → e′ satisfies the above require-
ments. Similarly, if tb → · · · → e′ intersects with e → · · · → ta at x
before it intersects with ta → · · · → e′, the path e′ → · · · → ta and path
tb → · · · → x → · · · → e where the part x → · · · → e is subpath of
ta → · · · → e satisfies the above requirements.

Using the above conclusion, if path ta → · · · → a → h (we choose the
shortest path in the part ta → · · · → a if there are multiple paths) intersects
with h → b → · · · → tb (similarly, we choose the shortest path in the part
b → · · · → tb) at any node except for h, we denote the topologically lowest
one (w.r.t. path h → b → · · · → tb) as x, then ta → · · · → x has no
intersection with x→ · · · → tb except for x, as any such intersection will be
lower than x. So the path e(e′) → · · · → ta → · · · → x → · · · → tb →
· · · → e′ is a valid path, making x a turning node. As ta 6= tb, we have
(x 6= ta) ∨ (x 6= tb). If x 6= ta, x is closer to a as we’ve chosen the shortest
path in part ta → · · · → a, contradicting the definition of ta. Similarly, it
is also impossible that x 6= tb. So the two paths ta → · · · → a → h and
h→ b→ · · · → tb do not intersect with each other.

Putting the above conclusions together, we can construct a valid path e(e′)→
· · · → ta → · · · → a→ h→ b→ · · · → tb → · · · → e′, making h a turning
node. Note that we also need to prove that the path e → · · · → ta does not
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intersect with path h → b → · · · → tb, which is analogous to the proof that
path ta → · · · → a→ h intersects with h→ b→ · · · → tb only at h.

Necessity: If h was a turning node, there would be a path e → · · · a → h →
b → · · · → e′, where the consecutive nodes before h are (child, parent) pairs and
(parent, child) pairs after h, and we denote the two direct children of h in the path
as a and b, in which a is ascendant of e (or e itself) and b ascendant of e′ (or e′

itself). So |Ch ∩ (Ae ∪ Ae′) | ≥ |{a, b}| = 2.
Then we prove that ∃a, b ∈ Ch ∩ (Ae ∪ Ae′) s.t. ta 6= tb by contradiction.

Suppose that ∀a, b ∈ Ch ∩ (Ae ∪ Ae′) we have ta = tb. Using the same notation
as above, denote a, b as the direct children of h in the path e → · · · a → h →
b → · · · → e′ which makes h a turning node. W.l.o.g. we consider two cases:
ta = tb = e, and ta = tb ∈ Qe,e′ . For the first case, tb = e⇒ e is a descendant of
b, and from the definition of b we know that e′ is a descendant of b, so b ∈ Ae,e′ .
From Lemma 2, tb ∈ Qe,e′ , contradicts tb = e.

For the second case ta = tb ∈ Qe,e′ , denote ta,b = ta = tb. As h is a turning
node, there exists a path e → · · · a → h → b → · · · → e′. Then the subpaths
e→ · · · → a and b→ · · · → e′ has no common nodes according to the definition
of a path. So at least one of the subpaths does not include ta,b, w.l.o.g assume
subpath b→ · · · → e′ does not include ta,b. As ta,b is a descendant of b, there exists
paths b → · · · → ta,b, and we pick up the shortest one. We’ll prove that there’s
no intersection between path b → · · · → ta,b and path b → · · · → e′: Assume
that there exists such intersections, and denote the topologically lowest intersection
(w.r.t. path b→ · · · → ta,b) as x, then as we’ve assumed that subpath b→ · · · → e′

does not include ta,b, we have x 6= ta,b. Then we can prove that x is a turning node:
If subpath x→ · · · → e′ does not intersect with path e→ · · · → ta,b, then we can
construct a path e → · · · → ta,b → x → · · · → e′, yielding x as a turning node.
Otherwise, if x → · · · → e′ intersects with ta,b → · · · → e′ before it intersects
with e→ · · · → ta,b or it does not intersect with e→ · · · → ta,b at all, then denote
the intersection node as y, we have a valid path e→ · · · → ta,b → x→ · · · → y →
· · · → e′ in which the part y → · · · → e′ is a subpath of ta,b → · · · → e′, yielding
x as a turning node. By similar construction, we can prove that if if x→ · · · → e′

intersects with e → · · · → ta,b before it intersects with ta,b → · · · → e′ or it does
not intersect with ta,b → · · · → e′ at all, x is also a turning node. However, x is
nearer to b than ta,b, which contradicts the definition of ta,b. So we have proved
that there’s no intersection between path b → · · · → ta,b and path b → · · · → e′.
Then we can prove that ta,b = b: If path b → · · · → e′ does not intersect with
e → · · · → ta,b, then a valid path e → · · · → ta,b → · · · → b → · · · → e′

will make b a turning node, so ta,b = b. Otherwise, if b → · · · → e′ intersects
with ta,b → · · · → e′ at z before it intersects with e → · · · → ta,b, then a valid
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path e → · · · → ta,b → · · · → b → · · · → z → · · · → e′ where the part
z → · · · → e′ is subpath of ta,b → e′ will make b a turning node. If b→ · · · → e′

intersects with e → · · · → ta,b at z before it intersects with ta,b → · · · → e′,
then through similar construction we can also prove ta,b = b. This contradicts the
assumption that subpath b → · · · → e′ does not include ta,b, so the second case is
also impossible.
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