

Email: <u>yvchen@cs.cmu.edu</u> Website: <u>http://vivianchen.idv.tw</u> Yun-Nung (Vivian) Chen William Yang Wang Anatole Gershman Alexander I. Rudnicky

OUTLINE

Introduction

- **Ontology Induction: Frame-Semantic Parsing**
- Structure Learning: Knowledge Graph Propagation
- Spoken Language Understanding (SLU): Matrix Factorization
- Experiments
 - Conclusions

OUTLINE

Introduction

- **Ontology Induction: Frame-Semantic Parsing**
- Structure Learning: Knowledge Graph Propagation
- Spoken Language Understanding (SLU): Matrix Factorization

Experiments

Conclusions

A POPULAR ROBOT - BAYMAX

Baymax is capable of maintaining a good **spoken dialogue system** and **learning** new knowledge for better **understanding** and **interacting** with people.

SPOKEN DIALOGUE SYSTEM (SDS)

Spoken dialogue systems are the intelligent agents that are able to help users finish tasks more efficiently via speech interactions.

Spoken dialogue systems are being incorporated into various devices (smart-phones, smart TVs, in-car navigating system, etc).

s Echo

Apple' Microsoft's s Siri Cortana

Microsoft's Amazon' **XBOX Kinect**

Samsung's SMART TV

Google Now

https://www.apple.com/ios/siri/

- http://www.windowsphone.com/en-us/how-to/wp8/cortana/meet-cortana
- http://www.xbox.com/en-US/
- http://www.amazon.com/oc/echo/
- http://www.samsung.com/us/experience/smart-tv/

https://www.google.com/landing/now/

CHALLENGES FOR SDS

An SDS in a new domain requires

- 1) A hand-crafted domain ontology
- 2) Utterances labeled with semantic representations
- 3) An SLU component for mapping utterances into semantic representations

With increasing spoken interactions, building domain ontologies and annotating utterances cost a lot so that the data does not scale up.

The goal is to enable an SDS to automatically learn this knowledge so that open domain requests can be handled.

INTERACTION EXAMPLE

Intelligent Agent

7

SDS PROCESS - AVAILABLE DOMAIN ONTOLOGY

SDS PROCESS – AVAILABLE DOMAIN ONTOLOGY

SDS PROCESS – AVAILABLE DOMAIN ONTOLOGY

SDS PROCESS – SPOKEN LANGUAGE UNDERSTANDING (SLU)

Organized Domain Knowledge

SDS PROCESS - DIALOGUE MANAGEMENT (DM)

GOALS

• Structure Learning (inter-slot relation)

GOALS

Knowledge Acquisition

SLU Modeling

SPOKEN LANGUAGE UNDERSTANDING

Input: user utterances

Output: the domain-specific semantic concepts included in each utterance

OUTLINE

Introduction

Ontology Induction: Frame-Semantic Parsing

Structure Learning: Knowledge Graph Propagation

Spoken Language Understanding (SLU): Matrix Factorization

Experiments

Conclusions

PROBABILISTIC FRAME-SEMANTIC PARSING

FrameNet [Baker et al., 1998]

- a linguistically semantic resource, based on the frame-semantics theory
- words/phrases can be represented as frames
- "low fat milk" → "milk" evokes the "food" frame;

"low fat" fills the descriptor frame element

SEMAFOR [Das et al., 2014]

 a state-of-the-art frame-semantics parser, trained on manually annotated FrameNet sentences

FRAME-SEMANTIC PARSING FOR UTTERANCES

FT: Frame Target; FE: Frame Element; LU: Lexical Unit

1st Issue: adapting *generic* frames to *domain-specific* settings for SDSs

SPOKEN LANGUAGE UNDERSTANDING

Input: user utterances

Output: the domain-specific semantic concepts included in each utterance

OUTLINE

Introduction

Ontology Induction: Frame-Semantic Parsing

Structure Learning: Knowledge Graph Propagation (for 1st issue)

Spoken Language Understanding (SLU): Matrix Factorization Experiments Conclusions

Assumption: The domain-specific words/slots have more dependency to each other.

Relation matrices allow each node to propagate scores to its neighbors in the knowledge graph, so that domain-specific words/slots have higher scores after matrix multiplication.

KNOWLEDGE GRAPH CONSTRUCTION

Syntactic dependency parsing on utterances

KNOWLEDGE GRAPH CONSTRUCTION

The edge between a node pair is weighted as relation importance to propagate the scores via a relation matrix

How to decide the weights to represent relation importance?

WEIGHT MEASUREMENT BY EMBEDDINGS

WEIGHT MEASUREMENT BY EMBEDDINGS

Compute edge weights to represent relation importance

- Slot-to-slot semantic relation R^S_s: similarity between slot embeddings
- Slot-to-slot dependency relation R_s^D : dependency score between slot embeddings
- Word-to-word semantic relation R_w^S : similarity between word embeddings
- Word-to-word dependency relation R^D_w: dependency score between word embeddings

<u>Y.-N. Chen</u> et al., "Jointly Modeling Inter-Slot Relations by Random Walk on Knowledge Graphs for Unsupervised Spoken Language Understanding," in *Proc. of NAACL*, 2015.

KNOWLEDGE GRAPH PROPAGATION MODEL

2nd Issue: unobserved hidden semantics may benefit understanding

OUTLINE

Introduction

Ontology Induction: Frame-Semantic Parsing

Structure Learning: Knowledge Graph Propagation

Spoken Language Understanding (SLU): Matrix Factorization (for 2nd issue)

Experiments

>

Conclusions

2ND ISSUE: HOW TO LEARN IMPLICIT SEMANTICS? MATRIX FACTORIZATION (MF)

MF method completes a partially-missing matrix based on a low-rank latent semantics assumption.

MATRIX FACTORIZATION (MF)

The decomposed matrices represent low-rank latent semantics for utterances and words/slots respectively

The product of two matrices fills the probability of hidden semantics

BAYESIAN PERSONALIZED RANKING FOR MF

Model implicit feedback

- not treat unobserved facts as negative samples (true or false)
- give observed facts higher scores than unobserved facts

$$f^{+} = \langle u, x^{+} \rangle$$

$$f^{-} = \langle u, x^{-} \rangle$$

$$p(f^{+}) > p(f^{-})$$

$$p(M_{u,x} = 1 \mid \theta_{u,x}) = \sigma(\theta_{u,x}) = \frac{1}{1 + \exp(-\theta_{u,x})}$$

$$\begin{array}{c}
f^{+} f^{-} f^{-} \\
x \\
u \\
1 \\
\end{array}$$

Objective:

$$\sum_{f^+ \in \mathcal{O}} \sum_{f^- \notin \mathcal{O}} \ln \sigma(\theta_{f^+} - \theta_{f^-})$$

The objective is to learn a set of well-ranked semantic slots per utterance.

MATRIX FACTORIZATION (MF)

MF method completes a partially-missing matrix based on a low-rank latent semantics assumption.

OUTLINE

Introduction

Ontology Induction: Frame-Semantic Parsing

Structure Learning: Knowledge Graph Propagation

Spoken Language Understanding (SLU): Matrix Factorization

Experiments

Conclusions

EXPERIMENTAL SETUP

Dataset

- Cambridge University SLU corpus
 [Henderson, 2012]
 - Restaurant recommendation in an in-car setting in Cambridge
 - WER = 37%
 - vocabulary size = 1868
 - 2,166 dialogues
 - 15,453 utterances
 - dialogue slot: addr, area, food, name, phone, postcode, price range, task, type

The mapping table between induced and reference slots

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

Annroach			ASR		Manual	
Approach		w/o	w/ Explicit	w/o	w/ Explicit	
Evolicit	Support Vector Machine	32.5		36.6		
Explicit	Multinomial Logistic Regression	34.0		38.8		

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

			Approach	ASR		Manual	
			Approach		w/ Explicit	w/o	w/ Explicit
	Explicit	Support Vector Machine		32.5		36.6	
_		Multinomial Logistic Regression		34.0		38.8	
Modeling Implicit Semantics	Implicit	Baseline Implicit MF	Random				
			Majority				
			Feature Model				
			Feature Model + Knowledge Graph Propagation				

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

	Approach			ASR		Manual	
				w/o	w/ Explicit	w/o	w/ Explicit
	Explicit	Support Vector Machine		32.5		36.6	
		Multinomial Logistic Regression		34.0		38.8 +	
Modeling Implicit Semantics	Implicit	Baseline mplicit MF	Random	3.4	•	2.6	•
			Majority	15.4		16.4	
			Feature Model	24.2		22.6	
			Feature Model +	40.5 *		52.1 *	
L			Knowledge Graph Propagation	(+19.1%)		(+34.3%)	

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

	Approach			ASR		Manual	
				w/o	w/ Explicit	w/o	w/ Explicit
	Explicit	Support Vector Machine		32.5		36.6	
		Multinomial Logistic Regression		34.0		38.8 +	
Modeling Implicit Semantics	Implicit	Baseline mplicit MF	Random	3.4	22.5	2.6	25.1
			Majority	15.4	32.9	16.4	38.4
			Feature Model	24.2	37.6*	22.6	45.3 [*]
			Feature Model +	40.5 *	43.5 *	52.1 *	53.4 *
L			Knowledge Graph Propagation	(+19.1%)	(+27.9%)	(+34.3%)	(+37.6%)

The MF approach effectively models hidden semantics to improve SLU.

Adding a knowledge graph propagation model further improves performance.

EXPERIMENT 2: EFFECTIVENESS OF RELATIONS

Ap	proach	ASR	Manual	
Featu	ure Model	37.6	45.3	
	Semantic	$\begin{bmatrix} R_w^S & 0 \\ 0 & R_s^S \end{bmatrix}$	41.4*	51.6*
Feature + Knowledge Graph	Dependency	$\begin{bmatrix} R_w^D & 0 \\ 0 & R_s^D \end{bmatrix}$	41.6*	49.0*
Propagation	Word	$\begin{bmatrix} R_w^{SD} & 0 \\ 0 & 0 \end{bmatrix}$	39.2*	45.2
	Slot	$\begin{bmatrix} 0 & 0 \\ 0 & R_s^{SD} \end{bmatrix}$	42.1*	49.9 [*]
99; i9	Both	$\begin{bmatrix} R_w^{SD} & 0 \\ 0 & R_s^{SD} \end{bmatrix}$		

All types of relations are useful to infer hidden semantics.

EXPERIMENT 2: EFFECTIVENESS OF RELATIONS

Ap	proach	ASR	Manual	
Featu	ure Model	37.6	45.3	
	Semantic	$\begin{bmatrix} R_w^S & 0 \\ 0 & R_s^S \end{bmatrix}$	41.4*	51.6*
Feature + Knowledge Graph	Dependency	$\begin{bmatrix} R_w^D & 0\\ 0 & R_s^D \end{bmatrix}$	41.6*	49.0*
Propagation	Word	$\begin{bmatrix} R_w^{SD} & 0 \\ 0 & 0 \end{bmatrix}$	39.2*	45.2
	Slot	$\begin{bmatrix} 0 & 0 \\ 0 & R_s^{SD} \end{bmatrix}$	42.1*	49.9 [*]
UKKK	Both	$\begin{bmatrix} R_w^{SD} & 0 \\ 0 & R_s^{SD} \end{bmatrix}$	43.5 [*] (+15.7%)	53.4 [*] (+17.9%)

All types of relations are useful to infer hidden semantics.

Combining different relations further improves the performance.

OUTLINE

Introduction

Ontology Induction: Frame-Semantic Parsing

Structure Learning: Knowledge Graph Propagation

Spoken Language Understanding (SLU): Matrix Factorization

Experiments

Conclusions

CONCLUSIONS

Ontology induction and **knowledge graph construction** enable systems to automatically acquire open domain knowledge.

MF for SLU provides a principle model that is able to

- unify the automatically acquired knowledge
- adapt to a domain-specific setting
- and then allows systems to consider implicit semantics for better understanding.

The work shows the feasibility and the potential of improving *generalization, maintenance, efficiency,* and *scalability* of SDSs.

The proposed unsupervised SLU achieves 43% of MAP on ASR-transcribed conversations.

Thanks for your attentions!!

