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Deep Learhing

Most of current machine learning learns the predictive value (the
weights) of human-given features

Representation learning systems attempt to automatically learn
good representations (or features)

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

A system with such a sequence is a deep architecture

The vast majority of such work has explored deep belief networks
(DBNs) which are Markov Random Fields with multiple layers

Several other variants of deep learning have seen a revival due to
improved optimization methods of multiple layer neural networks
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A De.e.p Architecture

Output layer =—

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)



Part 1.1: The Basics

Six Reasons ko Expi.are. 'De.e.p
Learning



# 1 Learning fe.a&ure.s , hot ju.s&
handerafting them

Most NLP systems use very carefully hand-designed
features and representations

Many of us are very experienced — and good — at such feature
design

In this world, “machine learning” reduces mostly to linear
models (including CRFs) and nearest-neighbor-like features/
models (including n-grams)

Hand-crafting features is time-consuming and brittle; the
features are often over-specified and incomplete



How can we automatically Learn good
features?

We need to move the scope of machine learning beyond
hand-crafted features and simple ML

Humans develop representations to enable learning and
reasoning; our computers should do the same

Deep learning provides a mechanism for learning good
features and representations

Handcrafted features can be combined with learned

features, or new more abstract features learned on top

of handcrafted features



# 2 The need for distributed
represehbabions

Current NLP systems are incredibly fragile because of
their atomic symbol representations
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# 2 The need for distributed
represe.v\&akions

Learned word representations, which model similarities,
help all NLP tasks enormously

E.g., distributional similarity based word clusters greatly help all
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)

E.g., paraphrasing, word-sense disambiguation, language
modeling...



# 2 The weed for distributed
re.prese.v\f:a&iohs
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Learning a set of features that are not mutually exclusive can be
exponentially more efficient than nearest-neighbor-like or clustering-like

models



# 3 Unsupervised feature and
weight Learning

Today, most practical, good machine learning methods
require labeled training data

But almost all data is unlabeled

The brain needs to learn about 101 connection weights

... in about 10° seconds

Labels cannot possibly provide enough information

(unless the weights were highly redundant)

Most information acquired in an unsupervised fashion
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#4‘ Learning mut&ipte. levels of

represeu&a&ion

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them to more complex ones
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#'4" Learning multiple levels
of representation

[Lee, Largman, Pham & Ng, NIPS 29]
Successive model layers learn deeper intermediate representations

High-level

? Layer 3 linguistic representations
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#4“ Handling the recursivity of
human Language

e Human languages, ideas, and
artifacts are composed from
simpler components

e Recursion: the same
operator (same parameters)
is applied repeatedly on
different states/components
of the computation
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#4‘ Using a deep architecture

e Deep architectures learn
good intermediate
representations that can be
shared across tasks

e |nsufficient depth of
representation can be
exponentially inefficient

e Multiple levels of latent
variables allow combinatorial
sharing of statistical strength
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#5 The curse of dimensianati&v

To generalize locally (e.g.,
nearest neighbors), we need
representative examples for o
all relevant variations! g Hons

1 dimension:
10 positions

We cannot hope to learn from
raw signals or random bases

Classical solutions:

* Manual feature design

* Hoping for a smooth enough
target function (such as
assuming a linear model) to
allow simple prediction

» 3 dimensions:
1000 positions!
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#6 Solving the curse of

di;me.v\si.ovmu(:v

Three approaches dominate recent work:

(Log-)Linear models
Flexibility achieved by adding more manually engineered features

Kernel methods
The basis functions are associated with data points, limiting complexity
Selection of a subset of data points further limits complexity
Output is linear in the output of near-neighbor detectors (kernel fn)

Neural networks

Parameterize and learn the kernel
Can be nested to create a hierarchy of abstraction levels

16



#6 Solving the curse of

di;me.v\si.ovmu&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power

Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning
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HE wny now?

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful

(except for convolutional neural nets when used by people with French names)

What has changed?

*  New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, etc.)

*  More efficient parameter estimation methods
* Better understanding of model regularization
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#6 Deep NLP Learning models
already work well

Neural Language Mode! [ IR TN

[Mikolov et al. Interspeech 2011] KNS5 Baseline 17.2

Q Discriminative LM 16.9
14.4

Sy Recurrent NN combination

State of the art performance for POS, NER, Chunking
[Collobert et al. 2011]

Task Benchmark | SENNA
Part of Speech (POS) (Accuracy) 97.24 % 97.29 %
Chunking (CHUNK) (F1) 94.29 % 94.32 %
Named Entity Recognition (NER) (F1) 89.31 % 89.59 %
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#6 Deep NLP Learning models
already work well

Sentences [Socher et al. 2011a] mark
MPQA sentiment 86.1 86.4

, MSFT Paraphrase 82.3 83.6
Paraphrase Detection [Socher et .
al. 2011b] SemEval Relation 82.2 82.4

Relation Classification [Socher et
al. 2012]
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#6 Deep NLF Learning models
already work well

MSR MAVIS Speech System
Context-Dependent Pre-trained Deep Neural Networks for Large

Vocabulary Speech Recognition (Dahl, Yu, Deng & Acero TASLP 2012)

Conversational Speech Transcription Using Context-Dependent Deep
Neural Networks (Seide, Li & Yu, Interspeech 2011)

acoustic model & training recognition mode RTO03S Hub5°00 voicemails tele-
FSH | SW SWB MS | LDC | conf
GMM 40-mix, ML, SWB 309h single-pass SI 30.2 40.9 26.5 45.0 33.5 35.2
GMM 40-mix, BMMI, SWB 309h single-pass SI 27.4 37.6 23.6 42.4 30.8 33.9
CD-DNN 7 layers x 2048, SWB 309h, this paper | single-pass Sl 18.5 27.5 16.1 329 229 244
(rel. change GMM BMMI — CD-DNN) (-33%) | (-27%) | (-32%) | (-22%) | (-26%) | (-28%)
| GMM 72-mix, BMMI, Fisher 2000h | multi-pass adaptive | 186 | 252 | 17.1 | | - ] - ]

The algorithms represent the first time a company has released a deep-neural-networks (DNN)-

based speech-recognition algorithm in a commercial product.
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HE wny now?

Deep Iearning models can now be very fast in some circumstances

* SENNA can do POS or NER extremely fast (16x to 122x)
compared to other SOTA taggers, using 25x less memory

Changes in computing technology favor deep learning
* In NLP, speed has traditionally come from exploiting sparsity

* But with modern machines, branches, and widely spread
memory accesses are costly

* Uniform parallel operations on dense vectors are faster

These trends hold even more strongly when using GPUs
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Good zwork -- but 7 think
we rmiight need a little
rmiore detail right fere.
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Outline of the Tutorial

1. The Basics

Motivations

From logistic regression to neural networks
Word representations

Unsupervised word vector learning
Backpropagation Training

Learning word-level classifiers: POS and NER

N oA N RE

Sharing statistical strength
2. Recursive Neural Networks
3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

1.

A i

7.

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces
Relation classification

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

3. Applications, Discussion, and Resources

1. Applications
1. Neural language models
2. Structured embedding of knowledge bases
3. Assorted other speech and NLP applications
2. Resources (readings, code, ...)

3. Discussion
1. Tricks of the trade
2. Limitations, advantages, future directions

26



27

Part 1.2: The Basics

From logistic regression to
heural wnets



Demystifying neural nebtworks

Neural networks come with
their own terminological
baggage (of “neurons”,
“activation functions”, and
“weight decay”)

... just like SVMs

But if you understand how
maxent/logistic regression
models work

Then you already understand the
operation of a basic neural

hetwork neuron!
28

A single neuron
A computational unit with n (3) inputs
and 1 output
and parameters W, b

Inputs Activation Output
function

Bias unit corresponds to intercept term



From Maxent Classifiers ko Neural
Networles

 |n NLP, a maxent classifier is normally written as:

exp E,ﬂi f(c,d)
Ec’ec AP Ei A1\ d)

Supervised learning gives us a distribution for datum d over classes in C

P(cld,A) =

e)L-f(c,d)

&

e Such a classifier is sometimes used as-is in a neural network

* Vectorform: p(cld A)=

e Often as the top layer (“a softmax layer”)
e But for now we’ll derive a two-class logistic model for one neuron
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From Maxent Classifiers ko Neural
Networlks

e)t-f(c,d)
e Vector form: P(cld,A)= ,
Eel-f(c )
cl
e Make two class:
e)t'f(cl’d) el'f(cl .d) e—l'f(cl .d)
P(c, 1d,A) = fad) L Aflad)  fed) . Aflead) —Afad)
e " re 2’ e M re 27 e b
: L forx= fle,d)- flcp.d)
= = orx=f(c — f(c
. _ _2- 1° 29
14 o (Cad-fleadl — g =k
o T (ed) CED PACED
P(c, |d, L) = = °
(c,1d,7) A fed) | hfed) — Jafled) | A fled)  =Af(a.d)
o (2 d)=f (erd) o

30 1 + ek[f(CZ ,d)_f(cl ,d) 1 + e_)t'.x



From Maxent Classifiers ko Neural
Networles

1

l+e

* Output of oneclass: P(c, | x,A)= i

e We often have an “always on” feature for a class, which gives a
class prior. We can separate it out as a bias term:

P(c, 1 x,A) = !

—[A-x+b]

l+e

* Or we can have x, be an always-on input

e We separate things into the vector dot product and applying a
non-linearity. Let f(z) = 1/(1 + exp(-z)), the logistic function.

* Then: P(c, 1 x,A)=f(A-x+b)
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This is e.xac&i.v whal a neuron
com pu,!:e.s

h,,(x)=f(w-x+b)

1
f(2)= l+e™
X1
X2
" h,,5(X)
+1

w, b are the parameters of this neuron

i.e., this logistic regression model
32



A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables

these logistic regressions are
trying to predict!
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A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.
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A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....
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Matrix notation for a Layer

We have
a, = f(W,x, + Wiox, + Wisxs + b))
a, = f (W x, + Wyx, + Wysx; + b))
etc.

In matrix notation

z=Wx+b
a=f(z)

where fis applied element-wise:

f([Zl,Zz,Z3])=[f(zl),f(zz),f(z3)] Layer L,

36



How do we train the weights w?

e For asingle layer neural net, we can train the model just like a
logistic regression model

* We can do stochastic gradient descent

* We can use fancier methods, as we commonly do for maxent
models like conjugate gradient or L-BFGS

e For a multilayer net it is potentially more complex because the
internal (“hidden”) logistic units make the function non-convex
... just as for hidden CRFs [Quattoni et al. 04, Gunawardana et al. 05]

* But we use the same ideas
* This leads into “backpropagation”, which we cover later
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Nown-Linearities: ka &ke.j’ re heeded

e For logistic regression, they’'re motivated by mapping to
probabilities: [0,1]
e Here, they’'re motivated by being able to do function
approximation
e Without non-linearities, neural networks can’t do anything
more than a linear transform: extra layers could just be
compiled down into a single linear transform

* The probabilistic interpretation for hidden units is usually
unnecessary except in the Boltzmann machine models.
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Nown-Linearities: What's used

logistic (“sigmoid”) tanh

1 Z_ —2Z
&) = o) f(2) = tanh(z) = ——°

ez + e %’
1- \ , . St hocton e
vy ol

/ n

6 4 2 o 2 1 R R R R

tanh is just a rescaled and shifted sigmoid (2 x as steep, [-1,1]):

tanh(z) = 2logistic(2z) -1
tanh is what is most used and often performs best for deep nets
[Glorot and Bengio AISTATS 2010]
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Nown-Linearities: There are various
other choices

hard tanh soft sign rectifier
-1 ifx<-—1 . a
HardTanh(x) = { = if —~1<=x<=1 softsign(z)=—r-— rect(z) = max(z,0)
1 ifx>1 1+|d]
v _ | .
| |
1
] S N S = R
Q.5 ...................... —Sigmoid ] 4l :
: —Softsign

5 25 0 25 5 o2 o0 b2

* hard tanh is a mathematically awkward but computationally cheap tanh

e [Glorot and Bengio AISTATS 2010] discuss uses of softsign and rectifier
40



Summary: Khowing the meaning of
words!

You should now understand the basics and how they relate to
other models you use

e Neuron = logistic regression or similar function

* |nput layer = input training/test vector

* Bias unit = intercept term

e Activation function is a sigmoid (or similar nonlinearity)
e Activation = response

e Backpropagation = running stochastic gradient descent across a
multilayer network

e Weight decay = regularization / Bayesian prior
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Effective deep Learning became possible
through unsupervised pre-training

} g

test classification error (perc)
+H

number of layers

42

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

number of layers
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Part 1.3: The Basics

Word Re.przsen!:a!:wns



Word repre.se.v\l:ai:i.ov\s

What is the main source of information in NLP?

Words.

How do most systems handle words?

Not very well.
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The standard word re.presehf:alzian

The vast majority of NLP work regards words as atomic symbols:
hotel, conference, wall

Regardless of whether it is rule-based NLP or statistical NLP

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coooocooo0c00l1 000 0]

Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 3M (Google 1T)
We call this a “one-hot” representation

Can one do better?
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The standard word re.presan&a&mh

A symbolic representation looks ridiculous as a vector ...
But it’s what vector space model IR actually uses (conceptually)

motel [oooooocoooo0loo0o0 o]
AND hotel [oooooco0co0l1000000 0]

= O

46



How does conventional IR !:rj ko solve
this pmbtem?

Query expansion (synonyms)
eXPAND(motel) [c o 00000100100 0 0]
AND hotel [cococo00c0l1000000O0]
Softer methods like pseudo-relevance feedback

‘PQF‘(MQ&QL) [cooco0l000200100004]
AND hotel [coococococoloocoooo o]
Making representations for whole documents, which are denser

motel [c oo 0000000100 0 0]
AND doc vec [0 103002001100 5]
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Dealing with the Sparsity of Language

This problem of seeing connections between words only
becomes worse when we move to dealing with relations
between word pairs and triples

Language modeling methods of backoff and interpolation

provide a poor way of dealing with a lack of information
about word similarity

We need a method that generalizes based on other
words that are semantically and syntactically similar

48



Distributional similarity based
represevx&a&iovxs

You can get a lot of value by representing a word by
means of its neighbors

One of the most successful ideas of modern statistical NLP

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

banking
banking

N These words will represent banking 77
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Distributional similarity based
represev\&akiov\s

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

Methods vary in the kind of context they exploit

Using a word or a few words to the left and/or right gives
largely syntactic word classes, with semantic coloring

players = musicians

Using the whole document gives much more “topical” semantic
similarity

inning = homered
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Class-based (hard clustering)
word representations

These models learn word classes based on distributional
information, roughly as a class HMM

* Brown clustering (Brown et al. 1992)
e Exchange clustering (Martin et al. 1998, Clark 2003)
Words are similar if they are put in the same class

This is a simplistic notion of similarity, but it is sufficient to give a
very useful desparsification of word data

* |It's not what we’re talking about today, but they are an
example of unsupervised pre-training

e And, in practice, these are still great features!
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Soft clustering word representations

These models learn for each cluster/dimension/factor a
distribution over words as probabilities or strengths

* Latent Semantic Analysis (LSA/LSI)
* Random projections

e Latent Dirichlet Analysis (LDA)

e HMM clustering

} Vector space

} Probabilistic

Broadly, neural word embeddings are in this space, combining
vector space semantics with the prediction of probabilistic models

(Bengio et al. 2003, Collobert & Weston 2008, Turian et al. 2010)
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Distributed Representations

In all of these approaches, including deep learning
models, a word is represented as a dense vector:

0.286
0.792
-0.177
linguistics = -0.107
0.109

-0.542

0.349
0.271

Some approaches aim for some sparsity in the vector.

e In probabilistic approaches, all the numbers are non-negative.



Distributed Representations

These are distributed representations: each word has a
weighting in each dimension or cluster

In contrast to the the “atomic” or “localist”
representations employed in most of NLP, a distributed
representation is one in which “each entity is
represented by a pattern of activity distributed over
many computing elements, and each computing element
is involved in representing many different entities”

(Hinton “Distributed representations” CMU-CS-84-157, 1984)
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Neural word embeddings
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Neural word embeddings
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France
Spain
Italy
Russia
Poland
England
Denmark
Germany

Portugal

Sweden

Austria

Jesus
Christ

God
Resurrection
Prayer
Yahweh
Josephus
Moses

Sin
Heaven

Salvation

Neural word embeddings

Most similar words to a few words

XBOX
Playstation
Dreamcast
PSHit#
SNES

WH

NES
Nintendo

Gamecube

PSP
Amiga

Reddish
Yellowish
Greenish
Brownish
Bluish
Creamy
Whitish
Blackish
Silvery
Greyish

Paler

Scratched
Smashed
Ripped
Brushed
Hurled
Grabbed
Tossed
Squeezed

Blasted

Tangled
Slashed

(Collobert & Weston, /ICML 2008)



Advantages of the neural word
embedding approach

Compared to a method like LSA:

* A neural embedding can learn higher-level features/abstractions
(beyond the word)

e Learning such an embedding forces a representation on the
words themselves that is better and more meaningful

* Because everything is trained together

e By adding supervision from either one task or multiple tasks
simultaneously, we can improve the representation of the
words for handling language analysis tasks
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Part 1.4: The Basics

Uv\supe:rvise.d word vector
Leariing



A neural network for Learning word
vectors (Collobert & Weston JMLR 2011)

ldea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

E[bcat chills on a mat == cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, Smith and Eisner (2005)
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A neural nekworlke for Learning word
vectors

* |dea: A word and its context is a positive training
sample, a random word in that same context is a

negative training sample.
e score(cat chills on a mat) > score(cat chills Jeju a mat)

e How to compute the score?

e With a neural network

e FEach word is associated with an
n-dimensional vector
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Word embedding makrix

e |nitialize all word vectors randomly to form a word embedding
matrix [, € R**IVI

V]
o o o) o0
o o o) o0
L = o o o o o |,
e o o o 0

the cat mat ..
e These are the word features we want to learn
e Also called a look-up table

* Conceptually you get a word’s vector by left multiplying a
one-hot vectorobyL: x=Lo
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Word vectors as inpu!: ko a neural
nebworle

e score(cat chills on a mat)

e To describe a phrase, retrieve (via index) the corresponding
vectors from L

cat chillson a mat

 Then concatenate them to (5n) vector:
e X =[ 0000 0000 0000 0000 0000 |

« How do we then compute score(x)?
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A Single Layer of a Neural Nebtworlk

* Asingle layer is a combination of a linear layer
and a nonlinearity: z = Wax+b

0 = J()

 The neural activations can then
be used to compute some function.

e For instance, the score we care about:
score(z) = WX a€R

SCore
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Summary: Feed-forward Computation

e Computing a window’s score with a 3-layer
Neural Net: s = score(cat chills on a mat)

s=WZL _f(Wx+0b) r € RPN W € R®*0 W, 00 € R¥X!
s = Weeore
z = Wax+b T
0 = ) 0000 0000
T = [Teat Tehills Ton Ta Tmat] 0000 0000 0000 0000 0000

L E]Rnx“/l cat chills on a mat
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Summary: Feed-forward Computation

e s =score(cat chills on a mat)
e s_=score(cat chills Jeju a mat)

e |dea for training objective: make score of true
window larger and corrupt window’s score
lower (until they’re good enough): minimize

J =max(0,1 — s + s.)
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Training with Backpropagation

J=max(0,1 —s+5s.) s=Wi,./[(Wz+b)

* Assuming cost is > 0, we compute the
derivatives of s and s_ wrt all the involved

variables: W__,., W, b, x
Js _ 0 w?T 4 OxTa B Dal'x B
8VVscore avvscore seore OX - OxX B A
0s

— a

aWS core
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Training with Backpropag&&&cu
Wl _f(Wax+b)

Score

e Let’s consider the derivative of a single weight Wi

s 0 . . o - o -
aW 8W score aW SCO?"Gf( ) 8W scoref( x _|_ )

 This only appears inside ai

 For example: Was is only

used to compute a2 W23

0
WT
aWw score@
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Tramms with Backpropag&kmvx

Js - -
W T OW Wscorea’ OW Wscoref( ) _ OW Wscoref(Wx + b)

e Derivative of weight Wij: 9y _ 9y du

Or  Ou Oz
3
8 8 Zi = Wi,~x +b, = Z Wi,jazj + b;
WSZ;O’PG — —Wscore 1 Q4 j=1
8WZ‘7 8Wij | a; = f(zz)
0 da; 0z;
Wecore,immr0i = Wacore,i . - WSCOI‘e,Z
’ 3Wz‘ja " 0z OW,;
— Wscore zaf(zz) azz
’ Ozz 8Ww W23
0z;
— Wsco'rei ' 7 .
o G g
OW;.x + b;
— Wscorei : 7 - :
o G =g
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Training with Backpropagation

[] ° [] [} a
* Derivative of single weight Wij: Wscore.igpy—a:
OW,;.x + b;
— Wscore ) / ) - - 3
0 a; = f(z)
— Wscore i ! 7 7
if'(z )aWij ; Wik Wscore,2
— Wscore,if/(zi) €L j
h ~ g W23
Local error Local input
signal signal
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Training with Backpropagation

* From single weight Wj; to full W:

aJ -
- W A (2 zi = Wix+0b = ZWi,jCUj +0b;
8WZ ' ! score,zf ( ZZ j i

— 51 £Cj a; = f(zz)

e We want all combinations of
i=1,2 and j=1,2,3
. 0J T
e Solution: Outer product: 7 = oz

ow
e where § € R**! jsthe
“responsibility” coming from each activation

Wscore,2

W23
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Training with Backpropagation

* For biases b, we get:

3
Wscore,i_ai ; v
8[)7; W n b ai = f(zi)
T .
— Wscorei / 1 - .
if (2 o0b; Wscore,2
— 5,

W23
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Training with Backpropagation

e We just almost learned the backpropagation
rule by carefully taking derivatives and using the
chain rule!

e The only remaining trick is to re-use derivatives
that we computed once, for lower layers.

e Let’s apply that idea for the last derivatives of
this model, the word vectors in x.
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Training with Backpropaga&mn

e Take derivative of score with s

respect to single word vector 0z
(for simplicity a 1d vector,
but same if it was longer)

e Now, we cannot just take
into consideration one a;
because each x; is connected
to all the neurons above and
hence x; influences the
overall score through all of
these, hence:

74

Z score, ’L W L _|_ b) 8W,Lx

Z 0; Wi
i=1
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Training with Backpropagation

e Sointhe last line, we re-used parts of the derivative of a
computation from a layer above.

* |n the next section, we will see how — with more deeper layers —
even more of the computation of higher layers can be re-used in
lower layers

75



76

Part 1.5: The Basics

Backpropagation Training



aack-‘?rap

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivatives chain rule wisely
_ _ Oz __ Oz Oy
e=fly) y=9) 5 =573

* If computing the loss(example,parameters) is O(n)
computation then so is computing the gradient
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Sim Pte. Chain Rule

78

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox



Mutl:i‘.pte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

79
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Chain Rule in Flow G—raph

&
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Chain gul.e n Flow G-m’ak

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of XL

0z 0vy;
Z 0y; Ox
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Back—-‘i’mp TN Mutti—Laye.r Net
NLL = —log P(Y = y|x)
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Back—-‘?rr.:p i Greneral Flow Grapk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of X
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Back—-‘?rap in Recur{rent ,si.ve} Net

* Replicate a parametrized function over different time steps or
nodes of a DAG

e Output state at one time-step / node is used as input for
another time-step / node

* Very deep once unfolded!

Z+1

X
t-1 X, Xi11

the cat runs fast
84



BP Through Structured Inference

Inference = discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous.

Collobert & Weston 2008: max-pooling layer
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Automatic Differentiation

86

The gradient computation can be
automatically inferred from the symbolic
expression of the fprop.

Makes it easier to quickly and safely try
new models.

Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output.

Theano Library (python) does it
symbolically. Other neural network
packages (Torch, Lush) do it numerically
(at run-time).
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Part 1.6: The Basics

Learning word-level classifiers:
POS and NER



Tke MOdet Input Window

Text cat sat on the mat

Feature 1 w% w% ‘u,.‘}\,.
e Collobert & Weston (2008) o B
Feature K wy wy L. WN
e Similar to the word vector 0
I . b t I th Lookup Table . 4
garnmg ut rep ace§ e [T~ ]
single scalar score with a : S Sy
e softmax (maxent) classifier Itwe ~~ [ | L] [ Ll

Linear(
M!xd A | |

* Training is again done via

backpropagation which gives HardTanh v
an error similar to the score /N |
in the unsupervised word Lincar ¢
vector learning model M2 xb A~ [T
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The Model - Training

e We already know the softmax classifier and how to optimize it

e The interesting twist in deep learning is that the input features
are also learned, similar to learning word vectors with a score:

Wscore,z

Wiabel

W23 W3
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The Model - Training

e All derivatives of layers beneath the score were multiplied by
Wscore, for the softmax, the error vector becomes the
difference between predicted and gold standard distributions

Wscore,z

Wiabel
W23

W23
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Multi-Task Learning

e Generalizing better to new

tasks is crucial to approach E
Al

Deep architectures learn
good intermediate
representations that can be
shared across tasks

e Good representations make
sense for many tasks
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E:xperimen&s

e Collobert et al (2011) share -
word embeddings across: (PWA) | (F1) | (F1) | (F1)

° Language mOdeIing(predict SOTA 97.24 94.29 89.31 77.92
next word) Supervised 96.37 90.33  81.47 70.99
* POS Semi- 97.20 93.63 88.87 74.15
* Chunking supervised/
multi-task
* SRL
e NER + hand- 97.37 94.35 89.70 76.06
crafted

* Parsing features

92
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Part 1.7

Sharing statistical strength



Sharing Statistical Strength

e Besides very fast predictors, the main advantage of deep
learning is statistical: potential to learn from less examples
because of sharing of statistical strength:

* Unsupervised pre-training and semi-supervised training
* Multi-task learning

* Multi-data sharing, learning about symbolic objects and their
relations
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Uhsupervised Learning

* Major breakthrough in 2006:

* Ability to train deep architectures
by using layer-wise unsupervised
learning, whereas previous
supervised attempts had failed

* Unsupervised feature learners:
* RBMs
° Auto-encoder variants
* Sparse coding variants

95
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Sharing Statistical Strength by Semi-
Supervised Learhing

e Hypothesis: P(x) shares structure with P(y|x)

semi-
® supervised
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Layer-wise Uhsupervised Learning

Input 000 .. O
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..
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Supervised Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)
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Aubto-Encoders

MLP whose target output = input

e Reconstruction=decoder(encoder(input)), e.g.
h = tanh(b+ W)

reconstruction = tanh(c+WTh)

cost = ||reconstruction — x||?

* Probable inputs have small reconstruction error code= latent features

C0000
encoder ecoder
000 (v O\}.A - O

input
e (Can be stacked successfully (Bengio et al NIPS’2006)
to form highly non-linear representations

reconstruction
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Auto-Encoder Varianks

107

Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

Preventing them to learn the identity everywhere:
* Undercomplete (eg PCA): bottleneck code smaller than input
e Sparsity: penalize hidden unit activations so at or near O

[Goodfellow et al 2009] g
e Denoising: predict true input from corrupted input
[Vincent et al 2008]
e Contractive: force encoder to have small derivatives
[Rifai et al 2011]




anifold Learning

Additional hypothesis: examples concentrate near a lower
dimensional “manifold” (region of high density with only few

operations allowed which allow small changes while staying on
the manifold)

Q
&
§
8
§
N
~
R4
&
§
O
N
§
&
$
i~
N
IS

“.fshrinking L)
transformation

4 "
e
raw input vector space




PCA = Linear Manifold
= Linear Aubto-Encoder

input x, 0-mean Linear manifold
features=code=h(x)=W x

reconstruction(x)=WT" h(x) = WT W x x
W = principal eigen-basis of Cov(X)

LSA example:
x = (normalized) distribution

of co-occurrence frequencies
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Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. »
e Both: keep ONLY sensitivity to variations

ON the manifold.
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Stacking Auto-Encoders

r

u
hz(ooogooo) ¥ (elelelolelel®)
W >W2' WZA
Jielelelelelel®) h,@OOS}OOO} OOOOO0O i ROOOOOOO)
A
W] WI’ w; W,

x QOO00O0OO000 x©OO0D x ©O000
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Why is Unsupervised Pre-~Training
Working So Well?

e Regularization hypothesis:
* Unsupervised component forces model close to P(x)
* Representations good for P(x) are good for P(y|x)

e Optimization hypothesis:

* Unsupervised initialization near better local minimum of
supervised training error

* Can reach lower local minimum otherwise not achievable by
random initialization

Erhan, Courville, Manzagol,
Vincent, Bengio (JMLR, 2010)
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Unsupervised Learhing:
Disentangling Factors of Variation

e [Goodfellow et al NIPS’2009]: some hidden units more
invariant (with more depth) to input geometry
variations

e [Glorot et al ICML’2011]: some hidden units specialize
on one aspect (domain) while others on another
(sentiment)

e We don’t want invariant representations because it is
not clear to what aspects, but disentangling factors
would help a lot

e Sparse/saturated units seem to help
e Why?
e How to train more towards that objective?
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Advantages of Sparse Representations

e Just add a penalty on learned representation
e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure
Few bits of information Many bits of information
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Multi-Task Learning

116

Generalizing better to new
tasks is crucial to approach
Al

Deep architectures learn
good intermediate
representations that can be
shared across tasks

Good representations make
sense for many tasks

-
——



Multi-Task Learning

e Collobert et al (2011) share POS | Chunk | NER | SRL
word embeddings across: (PWA) | (F1) 1 (F1) 1 (F1)

* Language modeling (predict ~ sOTA 97.24 9429 89.31 77.92

next word) Supervised 96.37 90.33 81.47 70.99
* POS

. Semi- 97.20 93.63 88.87 74.15

* Chunking supervised/
* SRL multi-task
* NER + hand- 97.37 9435 89.70 76.06
* Parsing SEEE

features
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Combining Muf.hpl.e. Sources of
Evidence wn&k Shared Embeddings

e Relational learning
e Multiple sources of information / relations
e Some symbols (e.g. words, wikipedia entries) shared

e Shared embeddings help propagate information
among data sources: e.g., WordNet, XWN, Wikipedia,
FreeBase,...

118



Part 2

Recursive Neural Nebworles

119



Building on Word Vector Space Models
A

X, .
57T ) ¢ 5
4T X [1.1]
4

3+ HKGermany [ ;]

-+ 9
2 France [2 ] xMonday[ ]
1T - K Tuesday [ ]
0 1 2 3 4 5 6 7 8 9 10

the country of my birth
the place where | was born

But how can we represent the meaning of longer phrases?

10 BY mapping them into the same vector space!



How should we mayp pkrases inko a

vector space?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) the rules that combine them.

x the country of my birth
x the place where | was born

5
0.4 2.1 7
0.3 33 7 .
the country of my

121

xGermany
xFrance
xMonday
xTuesday
— —t>
Ol 1 2 3 4 5 6 7 8 9 10 X4

Recursive Neural Nets
can jointly learn
compositional vector
representations and
parse trees



Recursive Neural Nebworles

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces

N o Uk W e

Relation classification
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Sentence Parsing: What we want

()
VP
PP

(Jw or
SO EIE NI

at mat.



Learn Skructure and Re.presan&aﬁon

()

()"
2]) e



Recursive Neural Networks for
Structure Prediction

Inputs: two candidate children’s representations

Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.

- ;) 8

o, /\[3]
(1 //W{\
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Recursive Neural Networlk Definikion

score = 1.3 [2] = parent

- T
score = W', ..p

Neural
Network | p= sigmoid(W[El]+ b),
2

where sigmoid: f

——
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Relalted Worlke ko Socher ek al, 2011a

* Pollack (1990): Recursive auto-associative memories

X

. PreV|ous Recursive Neural Networks work by [Goller & Kuchler

1996, Costa et al. 2003] assumed fixed tree structure and used
one hot vectors. [E &\

e Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth

versions of logic operations
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Parsing a sentence




Parsing a sentence




Parsing a sentence




Parsing a sentence



Max-Margin Framework - Details

e The score of a tree is computed by 1.3[2]
the sum of the parsing decision

scores at each node.

e Similar to max-margin parsing (Taskar et al. 2004), we can
formulate a supervised max-margin objective

J = Zs(xi,yl-) — max (s(xi,y) —|—A<y7)7i))
i yeA(x;)

e The loss A(y,yi) penalizes all incorrect decisions
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Backpropagation Through Structure
(8TS)

A1)
e Introduced by [Goller et al. 1996] E

* Principally the same as general backpropagation (efficient
matrix derivative)

e Two differences resulting from the tree structure:
e Split derivatives at each node

e Sum derivatives of W from all nodes
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BTS: SFLE& derivatives ot each node

e During forward prop, the parent is computed using 2 children
]
3

[21 C [gl C p = sigmoid(W[§2]+ b)

e Hence, the errors need to be computed wrt each of them:

8
[3 ] 5p—>0162 — [5p—>01 5p—>c2]
/N
P ~
/// \\\
L/

o W||€| e eaCII Cllild’S errot iS ||'di|||e||5i0||a|
: 1 3] 2
3 C l C
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BTS: Sum derivatives of all nodes

e You can actually assume it’s a different W at each node

e |ntuition via example:

0
o FOV (W)
rovova) (G ) F0va)+ Wi s
POV (F(W2)) (F(Wa) + W f (W)a)

e |f take separate derivatives of each occurrence, we get same:

135

0 0
W, (Wa(f(Wix)) + a—Wlf(W2(f(W15€))
frWo(f(Wha)) (f(Wha)) + f(Wa(f(Wiz)) (Waf (Wiz)x)
FWa(f(Wix)) (f(Whiz) + W f'(Wix)x)

FW (W) (f(Wz) + W f/(Waz)x)



BTS: Op&'nmi.z.alzi.ov\

* As before, we can plug the gradients into a
standard off-the-shelf L-BFGS optimizer

* For non-continuous objective use subgradient
method [Ratliff et al. 2007]
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Details of Recursive Neural Nebworks

e Structure search was maximally greedy

* |nstead: Beam Search with Chart

e |nclude context: the word to the left and right

®
(eXeXeXexexe)

(OO0 0)
|
(C00000000)

-
- ~ -
- ~
- ~ -
- -~

(OO0000) (000000O) (0O000O0) (OCOOOOO)
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Labeling in Recursive Neural Networles
NP
e \We can use each node’s

representation as features for a Softmax
softmax classifier:

label,, = softmaa:(Wlabelp) [s]

Layer

Neural

Network
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E:xpe.ri‘.men!:s: Parsing Short Sentew

e Standard WSJ train/test

e Good results on short
sentences

e  More work is needed for Sigmoid NN (Titov & Henderson 2007) 89.3

longer sentences

L15 Dev L15 Test

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.
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‘Pamlokmse. detection taske

e Goalis to say which of candidate phrases are a good
paraphrase of a given phrase
* Motivated by Machine Translation

e Initial algorithms: Bannard & Callison-Burch 2005 (BC 2005), Callison-
Burch 2008 (CB 2008) exploit bilingual sentence-aligned corpora and
hand-built linguistic constraints

» We simply re-use our F1 of Paraphrase Detection

system learned on 0.5
parsing the WSJ 0.4
A 0.3
0.2
0.1 -
() ¢ ) G ¢ ()
)L -

BC 2005 CB 2008 RNN
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‘Parapkrase detection kaske

the united
states

around the
world

it would be

of capital
punishment

in the long
run

141

Candidates with human goodness label (1-5) ordered by our system

the usa (5) theus(5) united states(5) north america(4) united (1)
the (1) of the united states (3) america (5) nations (2) we (3)

around the globe(5) throughout the world(5) across the world(5) over
the world(2) in the world(5) of the budget(2) of the world(5)

it would represent (5) there will be (2) that would be (3) it would be
ideal (2) it would be appropriate (2) itis(3) itwould(2)

of the death penalty (5) to death (2) the death penalty (2) of (1)

in the long term (5) in the shortterm (2) for the longer term (5) in
the future (5) inthe end (3) inthelong-term (5) intime (5) of the (1)



Recursive Neural Nebworles

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces

N o Uk W e

Relation classification
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Recursive Autoencoders

e Similar to Recursive Neural Net but instead of a
supervised score we compute a reconstruction error

1
at each node. Eree([c1: ca]) = . H[C1;CQ] B [0/1;6/2]

2
|
oo Y,=f(W[xs;y1] + b)

s
O00QO 0000
A

XXX y1=f(W[X2,'X3] + b)

(eoe0e@) (eeee) (0000
X1 X2 X3

\_
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Sem i-supervf.se.d Recursive
Autoencoder

* |In order for representations to capture sentiment, we add a softmax
classifier

e Erroris a weighted combination of reconstruction error and cross-entropy
(distribution likelihood)

e Socheretal.2011b

Reconstruction error Cross-entropy error

g T )

(0000000 0000000 00OCGO0CO
W(Z) W(Iabel)
0000000

wo
(0000000 (0000000
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Sentiment Detection and Bag-of-Words
Models

e Sentiment detection is crucial to business
intelligence, stock trading, ...

e Most methods start with a bag of words
+ linguistic features/processing/lexica

e But such methods (including tf-idf) can’t
distinguish:
+ white blood cells destroying an infection
- an infection destroying white blood cells
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Single Scale Experiments: Movies

Stealing Harvard doesn’t care about

cleverness, wit or any other kind of
intelligent humor.

a film of ideas and wry comic
mayhem.
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Accuracy of Positive/Negative

Senkiment Classification

e Results on movie reviews (MR) and opinions (MPQA).
e All other methods use hand-designed polarity shifting

rules or sentiment lexica.

e RAE: no hand-designed features, learns vector

Phrase voting with lexicons 63.1
Bag of features with lexicons 76.4
Tree-CRF (Nakagawa et al. 2010) 77.3

RAE (this work) 77.7
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81.7
34.1
36.1
36.4



Sorted Negative and Positive N-gqrams

Most Negative N-grams Most Positive N-grams

bad; boring; dull; flat; pointless  touching; enjoyable; powerful

that bad; abysmally pathetic the beautiful; with dazzling
is more boring; funny and touching;
manipulative and contrived a small gem

boring than anything else.; cute, funny, heartwarming;

a major waste ... generic with wry humor and genuine

loud, silly, stupid and pointless.; , deeply absorbing piece that

dull, dumb and derivative horror works as a;

film. ... one of the most ingenious and
entertaining;
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Learning Compositionality from Movie
Reviews
e Probability of being positive of several n-grams

n-gram ______P(positive | n-gram)

good 0.45
not good 0.20
very good 0.61
not very good 0.15
not 0.03

very 0.23
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Sewtiment Distribution Experiments
e Learn distributions over multiple complex
sentiments 2 New dataset and task

* Experience Project
* http://www.experienceproject.com
* “| walked into a parked car”

* Sorry, Hugs; You rock; Tee-hee ; | understand;
Wow just wow

* Over 31,000 entries with 113 words on average
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Sentiment distributions
* Sorry, Hugs; You rock; Tee-hee ; | understand;

Wow just wow
Predicted and Anonymous Confession

Gold Distribution

l..

i am a very succesfull business man. i make good money but i
have been addicted to crack for 13 years. i moved 1 hour away

| from my dealers 10 years ago to stop using now i dont use daily
but ...

well i think hairy women are attractive

Dear Love, | just want to say that | am looking for you. Tonight |
felt the urge to write, and | am becoming more and more
frustrated that | have not found you yet. I’'m also tired of spending
so much heart on an old dream. ...

- [°
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Experience Project most votes resulls

Method | Accuracy% _

Random 20
Most frequent class 38
Bag of words; MaxEnt classifier 46
Spellchecker, sentiment lexica, SVM 47
SVM on neural net word features 46
RAE (this work) 50

Average KL between 08

gold and predicted M

label distributions: 0s3 | | 081 | | 072 | | 073 | | 070

0.6 L
153 Avg.Distr. BoW FeaturesWord Vec. RAE



‘Paraphrase Detection

154

Pollack said the plaintiffs failed to show that Merrill
and Blodget directly caused their losses

Basically , the plaintiffs did not show that omissions
in Merrill’s research caused the claimed losses

The initial report was made to Modesto Police
December 28

It stems from a Modesto police report



How to compare the
meaning of two
sentences?



Recursive Autoencoders for Full
Sentence Para pkmse; Detection

e Unsupervised RAE and a pair-wise sentence
comparison of nodes in parsed trees
e Socheretal. 2011c

Recursive Autoencoder Neural Network for Variable-Sized Input

FACX X X

m I
2 3@eee 4(eeee leee® 2@12&1—0

The cats catch mlce Cats eat mice
—_ |

Paraphrase

Pairwise Classification Output

Neural Network

Variable-Sized Pooling Layer

Similarity Matrix
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Unsupervised unfolding RAE

(@QO@)Xl' (oooo)xz' CQQOQ)X3'

Wy Wy
C@ N O) yll

Wen\@u OB

We
000X (0000)X) (0000)X3
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Nearest Neighbors of the Unfolding
RAE

CenterPhrase _____|RAE_____________|Unfolding RAE

the U.S. the Swiss the former U.S.
suffering low morale suffering due to no fault of  suffering heavy
my own casualties
advance to the next advance to the final of the advance to the semis
round UNK 1.1 million Kremlin Cup
a prominent political the second high-profile a powerful business
figure opposition figure figure
Seventeen people were Fourteen people were killed Fourteen people were
killed killed
conditions of his release  conditions of peace, social negotiations for their
stability and political release

harmony
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Recursive Autoencoders for Full
Sentence Paraphrase Detection

e Experiments on Microsoft Research Paraphrase Corpus
(Dolan et al. (2004))

I -

All Paraphrase Baseline 66.5 79.9
Rus et al.(2008) 70.6 80.5
Mihalcea et al.(2006) 70.3 81.3
Islam et al.(2007) 72.6 81.3
Qiu et al.(2006) 72.0 81.6
Fernando et al.(2008) 74.1 82.4
Wan et al.(2006) 75.6 83.0
Das and Smith (2009) 73.9 82.3
Das and Smith (2009) + 18 Surface Features 76.1 82.7

Unfolding Recursive Autoencoder (our method) 76.4 83.4
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Recursive Autoencoders for Full
Sentence Paraphrase Detection

Sentences

0.95

(1) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion -
Australian football - as the world champion relaxed before his Wimbledon title defence

(2) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion-
Australian rules football-as the world champion relaxed ahead of his Wimbledon defence

0.82

(1) The lies and deceptions from Saddam have been well documented over 12 years
(2) It has been well documented over 12 years of lies and deception from Saddam

0.67

(1) Pollack said the plaintiffs failed to show that Merrill and Blodget directly caused their
losses

(2) Basically , the plaintiffs did not show that omissions in Merrill’s research caused the
claimed losses

0.49

(1) Prof Sally Baldwin, 63, from York, fell into a cavity which opened up when the struc-
ture collapsed at Tiburtina station, Italian railway officials said

(2) Sally Baldwin, from York, was killed instantly when a walkway collapsed and she fell
into the machinery at Tiburtina station

Sim.Mat.

0.44

(1) Bremer, 61, is a onetime assistant to former Secretaries of State William P. Rogers and
Henry Kissinger and was ambassador-at-large for counterterrorism from 1986 to 1989
(2) Bremer, 61, is a former assistant to former Secretaries of State William P. Rogers and
Henry Kissinger
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0.11

(1) The initial report was made to Modesto Police December 28
(2) It stems from a Modesto police report




Recursive Neural Nebworles

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces

N o Uk W e

Relation classification
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Compositionality Through Recursive
Matrix-Vector Spaces

p = sigmoid(W[21]+ b)
2

e But what if words act mostly as an operator, e.g. “very” in

very good
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Compositionality Through Recursive
Matrix-Vector Recursive Neural Networks

p = sigmoid(W[zl]+ b) p = sigmoid(W [gzzj +b)
2

1

Recursive Matrix-Vector Model

- vector

0| i
®0 matrix
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Predicting Senmktiment Distributions

fairly awesome

—o— MV-RNN
-+--RNN

0.5

fairly annoying
——MV-RNN

not annoying

—e—MV-RNN
-+~ RNN

05

0.4r
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unbelievably annoying

—e—MV-RNN
-+~ RNN

A

not awesome
—— MV-RNN

0.5

unbelievably awesome

——MV-RNN
-+~ RNN

05

0.4r

false true

false/>\

false A true A

051

0.4

03r

0.2}

01F

05r

0.4

03r

0.2}

01F

fairly sad

—o— MV-RNN
-+--RNN

not sad

—=—Training Pair\

unbelievably sad

——MV-RNN
~+=RNN ;

false - true



MV-RNN for Relationship Classification

Classifier: Message-Topic \

@e) OO

B

the [movie] showed [wars]

Relationship

Sentence with labeled nouns for which to predict
relationships

Cause-Effect(e2,el)

Entity-Origin(el,e2)

Message-Topic(e2,el)

165

Avian [influenzale1 is an infectious disease caused by type a
strains of the influenza [virus]e2.

The [mother]e1 left her native [land]e2 about the same time
and they were married in that city.

Roadside [attractions]e1 are frequently advertised with
[billboards]ez to attract tourists.



MV-RNN for Relationship Classnfma&mu

Classifier  Feature Sets

SVM POS, stemming, syntactic patterns 60.1

SVM word pair, words in between 72.5

SVM POS, WordNet, stemming, syntactic 74.8
patterns

SVM POS, WordNet, morphological fea- 77.6

tures, thesauri, Google n-grams

MaxEnt POS, WordNet, morphological fea- 77.6
tures, noun compound system, the-
sauri, Google n-grams

SVM POS, WordNet, prefixes and other 82.2
morphological features, POS, depen-
dency parse features, Levin classes,
PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, Tex-

tRunner
RNN - 74.8
LinMVR - 73.0
MV-RNN - 79.1
RNN POS,WordNet,NER 77.6
LinMVR POS,WordNet,NER 78.7
MV-RNN POS,WordNet,NER 82.4
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Summarvt Recursive 'Bee.p Learning

e Recursive Deep Learning can predict hierarchical structure and classify the
structured output using compositional vectors

e State-of-the-art performance on
* Object detection on Stanford background and MSRC datasets
e Sentiment Analysis on multiple corpora
e Paraphrase detection on the MSRP dataset
* Relation Classification on SemEval 2011, Task8

Recursive Autoencoder Neural Network for Variable-Sized Input . -
Recursive Matrix-Vector Model

7038 SeRe Paraphrase  paijrwise Classification Output CXep (o) - vector
i ...... f(Ba, Ab)=cser .
6 @ee® Seee® 4@ee® Neural Network B /‘} . -matrlx
a=@e =(@e
g;; 3@es9 4@eee 1@eee 2(&) @ Variable-Sized Pooling Layer jjlg T \
@® 00

[CX°)

1 @see
The cats catch mice Cats eat mice CY2) @,
| ) good movie

1
2

by Similarity Matrix - very

j b,B)

1234567 (/,Oio'\ ;\O ((W"oo %'O%)
@® @® ¢
— ]
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Part 3

1. Applications
1. Neural language models
2. Structured embedding of knowledge bases
3. Assorted other speech and NLP applications
2. Resources (readings, code, ...)
3. Tricks of the trade
Discussion: Limitations, advantages, future directions
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Existing NLP Applications

e Language Modeling
e Speech Recognition
* Machine Translation
e Part-Of-Speech Tagging
e Chunking
e Named Entity Recognition
e Semantic Role Labeling
e Sentiment Analysis
e Paraphrasing
* Question-Answering

* Word-Sense Disambiguation



Part 3.1: Applications

Neural Language Models
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Neural Langquage Model

 Bengio et al NIPS’2000
and JMLR 2003 “A
Neural Probabilistic

Language Model”

* Each word represented by
a distributed continuous-
valued code

* Generalizes to sequences
of words that are
semantically similar to
training sequences

171

i-th output = P(w; = i | context)

normalized exponential

(e o [ ]

000 )

most| computation here

W

tanh
( 00 ..)

......................
shared parameters
across words

Wt—n+1 Wt—2 Wi—1



Bilinear Language Model

172

Even a linear version of the Neural Language Model works

better than n-grams

[Minh & Hinton 2007]

APNews perplexity
down from 117 (KN6)

t0 96.5

|V|-length
Softmax layer

7 P=Y Ciry,
C
......................... n-length
Embedding
........... e ayer




Language Modeling

* Predict next word given previous words
e Standard approach: output = P(next word | previous word)
* Applications to Speech, Translation and Compression

 Computational bottleneck: large vocabulary V means that
computing the output costs #hidden units x |V|.
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Language Modeling Output Bottlenecie

" k|

 [Morin & Bengio 2005; Blitzer et al 2005, Mnih & Hinton
2007,2009; Mikolov et al 2011]: hierarchical representations,

multiple output groups, conditionally computed, predict
. P(word category | context)
e P(sub-category | context, category)
e P(word | context, sub-category, category) categories

 [Schwenk et al 2002]: only predict most frequent words
(short list) and use n-gram for the others

e With 2 levels, O(|V]|) becomes O(sqgrt(|V])) Q

e With d levels, O(|V|) becomes O(log(|V])) words within each category

* Hard categories, can be arbitrary [Mikolov et al 2011] e
174 &«



Language Modeling Output Bottlenecie:
Hierarchical word cateqories

Compute P(category|context)  P(word]|context,category)

P(word|category,context)
only for
category=category(word)

only for
category(word)

Context = previous words
175



Language Modeling Output Bottlenecie:
Sampling Methods

176

Importance sampling to recover next-word probabilities
[Bengio & Senecal 2003, 2008]

* Decrease score of randomly selected word (negative example)
* (not anymore outputting probabilities, ok if the goal is just to learn word embeddings)

Sampling a ranking loss [Collobert et al, 2008, 2011]

* Increase score of observed word’s output

Importance sampling for reconstructing bag-of-words [Dauphin
et al 2011}




Neural Net Language Modeling for ASR

*  [Schwenk 2009], real-time ASR, perplexity AND word error rate |mprove
(CTS evaluatlon set 2003), perplexmes go from 50.1 to 45.5 ~

o backoff LM, CTS data £ | |
St hybrid LM, CTS data ===
2 x|l ystem backoff LM, CTS+BN data ———1 | _
= 25270 hybrid LM, CTS+BN data Ezzz2
— . o g
@)
24.51%
5 24t % system?2 _
-g Z 23.04%§
22.19% — 22.32%
(i 21 Z v 7] 2177% §
Syst 3
% 2 7 ystem
= 20 F 19.94% -
. 7 é 19.10% 19.30%
% / ' 18.85%
18 + % / .
1 A 1 1
7.2M 12.3M 27.3M

in-domain LM training corpus size
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Apptical:iou to Skatistical Machine
Tronslakion :i‘

* Schwenk (NAACL 2012 workshop on the future of LM)
e 41M words, Arabic/English bitexts + 151M English from LDC

* Perplexity down from 71.1 (6 Gig back-off) to 56.9 (neural
model, 500M memory)

* +1.8 BLEU score (50.75 to 52.28)

* (Can take advantage of longer contexts

Code: http://lium.univ-lemans.fr/cslm/
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Part 3.1: Applications

Skructured embedding of
Inowledqge bases

179



Modeling Semamntics

Learning Structured Embeddings of
Knowledge Bases, Bordes, Weston,
Collobert & Bengio, AAAI 2011

(_door_1, has part, |

o

ck 2)

’
O
Joint Learning of Words and Meaning ﬁ 1

Representations for Open-Text A Righi
Semantic Parsing, Bordes, Glorot, e ——
Weston & Bengio, AISTATS 2012 Moo 1 Nes o ok
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Modeling Relations with Matrices

energy

choose matrices

; Eoosevector
lhs rhs
Model (lhs, relation, rhs)

Each concept = 1 embedding vector
Each relation = 2 matrices. Matrix acts like an operator.
Ranking criterion

18Ignergy = low for training examples, high o/w

relation



Allowing Relations o Relatiowns

energy

choose vector

relation rh

Verb = relation. o many to have a matrix each.
Each concept = 1 embedding vector
Each relation =1 embedding vector

Can handle relations on relations on relations
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Training on Full Sentences

energy

F )

Element-wjse max. Element-wise max.

Verb words Obj. words

Subj. words
black__ 2 cat__1 eat__2 white__1 mouse_2

Use SENNA (Collobert 2010) = embedding-based NLP tagger for Semantic
Role Labeling, breaks sentence into (subject part, verb part, object part)

- Use max-pooling to aggregate embeddings of words inside each part
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Open-Text Semantic Parsing

e 3 steps:
""A musical score accompanies a television program ."
1, Semantic Role Labeling
(""A musical score", "‘accompanies”, "'a television program")
J, Preprocessing (POS, Chunking, ...)
((_musical_JJd score_NN ), _accompany VB ,_television_program NN )

\l, Word-sense Disambiguation

((_musical_JJ_1 score_NN_2), _accompany_VB_ 1, television_ program NN_1)

e |ast formula defines the Meaning Representation (MR).
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Training Criterion

e Intuition: if an entity of a triplet was missing, we would like our
model to predict it correctly i.e. to give it the lowest energy.
For example, this would allow us to answer questions like “what
is part of a car?”

* Hence, for any training triplet x, = (lhs, rel,, rhs) we would like:
(1) E(lhs;, rel, rhs;) < E(lhs;, rel;, rhs),
(2) E(lhs, rel, rhs)) < E(lhs;, rel;, rhsy),
(3) E(lhs, rel, rhs;) < E(lhs;, rel,, rhs;),

That is, the energy function E is trained to rank training samples
below all other triplets.
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Training Algorithm
pseudo-likelihood + uniform sampling of neqative
variants

Train by stochastic gradient descent:
1. Randomly select a positive training triplet x, = (lhs,, rel,, rhs;).
2. Randomly select constraint (1), (2) or (3) and an entity é:

- If constraint (1), construct negative triplet X' = (&, rel,, rhs,).
- Else if constraint (2), construct X’ = (lhs, &, rhs,).
- Else, construct X' = (lhs,, rel, &).

3. If E(x,) > E(X’) — 1 make a gradient step to minimize:
max(0, 1 - E(X) + E(x/)).
4. Constraint embedding vectors to norm 1
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Question Answering: implicitly
adding new relations to WN or FB

Model (All) TextRunner
lhs ~army_NN_1 army
rel _attack_vB_1 attacked
_troop_NN_4 Israel
top | _armed_service_.NN_1| the village
ranked Ship_NN_1 another army
rhs _territory_NN_1 the city
~_military_unit_NN_1 the fort
_business_firm_NN_1 People
top _person_NN_1 Players
ranked family_NN_1 one
lhs _payoff_NN_3 Students
_card_game_NN_1 business
rel _earn_VB_1 earn
rhs ~-money_NN_1 money

187/

MRs inferred from text
define triplets between
WordNet synsets.

Model captures
knowledge about
relations between nouns
and verbs.

- Implicit addition of
new relations to

WordNet!

- Generalize Freebase!



Embedding Near Neighbors of
Words & Senses

“mark_NN “mark_NN_1 “mark_NN_2
_indication_NN _score_NN_1 “marking_NN_1
_print_NN_3 _number_NN_2 symbolizing_NN_1
_print_NN _gradation_NN “naming_NN_1
_roll_ NN _evaluation_NN_1 ~marking_NN
_pointer_NN “tier_.NN_1 _punctuation_NN_3
_take VB ~canary_NN _different_JJ_1
_bring_VB _Ssea_mew_NN_1 _eccentric_NN
_put_VB _yellowbird_NN_2 _dissimilar_JJ
~ask_VB _canary_bird_NN_1 _Same_JJ_ 2
_hold_VB larus_marinus_NN_1| _similarity_NN_1

_provide_VB

“mew_NN

~common_JJ_1
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Word Sense Disambiquation

e Senseval-3 results
(only sentences with

Subject-Verb-Object
structure)

MFS=most frequent sense
All=training from all sources

Gamble=Decadt et al 2004
(Senseval-3 SOA)

e XWN results
XWN = eXtended WN
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Part 3.1: Applications

Assorted obther spe.e.ck and NLP
appucati.ons

190



Learning Multiple Word Vectors

e Tackles problems with polysemous words

e (Can be done with both standard tf-idf based
methods [Reisinger and Mooney, NAACL 2010]

e Recent neural word vector model by [Huang et al. ACL 2012]
learns multiple prototypes using both local and global context

N‘““ 470

 State of the art EecaContaxt Slobal,Context

score

correlations with /‘i\

human similarity
judgments

global semantic vector I
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Learning Multiple Word Vectors

e Visualization of learned word vectors from
Huang et al. (ACL 2012)

translatiofvels fantasy stars

mangda
laundering movie—k o
transaction talk  ({plevision Inais
finance bank, video constellation
banking camera venue oracle
9P fiash asteroid mars S
: galaxy moon
rer%trwé:lpality direction planet
boundary
gap  G@nal.
plateau
territory
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Recurrent Neural Net Language
Modeling for ASR

45 .
2 —>*—— RNN
14’__ Il —— RNNeKN4
* [Mikolov et al 2011] SE s - |
—(O— - RNNME+KN4

@  Bigger is better... sl NG O PNER
Q experiments on Broadcast ; N RS

“= " News NIST-RT04
&

!

WER on eval [%)]
=)

\
125
perplexity goes from
140 to 102 12
115 M " " M PR | N M L N PR
Paper shows how to o : 12
train a recurrent neural net Hidden layer size
. . . P(w:| context) P(w:t| context)
with a single core in a few — —
. >
days, with > 1% absolute | T
o . |
improvement in WER > N
L > wm-tH}V»
L 3 —>
Code: nttp://www.fit.vutbr.cz/~imikolov/rnnlm/ L > —>
- > —>>
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Phoneme-Level Acoustic Models

* [Mohamed et al, 2011, IEEE Tr.ASLP] Tq :
2PN
* Unsupervised pre-training as Deep Belief Nets (a stack of
RBMs), supervised fine-tuning to predict phonemes
* Phoneme classification on TIMIT:
e CD-HMM: 27.3% error
* CRFs: 26.6%
* Triphone HMMs w. BMMI: 22.7%
* Unsupervised DBNs: 24.5%

* Fine-tuned DBNs: 20.7%
* Improved version by Dong Yu is RELEASED IN MICROSOFT’S

ASR system for Audio Video Indexing Service
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Sentiment Analysis on
Bag-of-word répresentations

195

[Glorot et al, ICML 2011]
beats SOTA on Amazon
benchmark
Bag-of-words input
Embeddings pre-trained in
denoising auto-encoder
with rectifier activation
functions and sampled
reconstruction
Disentangling effect
(features specialize to
domain or sentiment)

093

096

094 r

0.92

09r

088

0.86 -

in-domain ratio

Baseline Sk Baseline 100k MLFP DL1 DL3



Sentiment Analysis: Transfer
Learning

25 Amazon.com domains:
toys, software, video,
books, music, beauty, ...

Unsupervised pre-training
of input space on all
domains

Supervised SVM on 1
domain, generalize out-
of-domain

Transfer ratio

1
i Baseline SCL MCT SFA T-SVM SDA SDAsh
Baseline: bag-of-words + aseline s

SVM
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Part 3.2: Resources

Resources: Code and
References

197



Papers, Related Tutorials

198

See “Neural Net Language Models” Scholarpedia entry
Deep Learning tutorials
* http://deeplearning.net/tutorials/

Stanford Deep learning tutorials with simple programming
assignments and reading list

e http://deeplearning.stanford.edu/wiki/

Recursive Autoencoder class project:
http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf



Software

* Theano (Python CPU/GPU mathematical and deep learning
library
* http://deeplearning.net/software/theano/
 Senna by (Collobert et al 2011, JMLR)
* POS, Chunking, NER, SRL
* State-of-the-art performance on many tasks

* 3500 lines of C, extremely fast and using very little memory
e Recurrent Neural Network Language Model
e Recursive Neural Net and RAE models for paraphrase detection,
sentiment analysis, relation classification

°
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Part 3.3: Deep Learning Tricks

Deep Learning Tricks
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Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
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Stochastic Gradient Descent (SGD)

202

Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

_ OL(z,0)
ALt — gUt—1) _ ¢, 070
o0

L = loss function, z, = current example, 6 = parameter vector, and
g, = learning rate.

Ordinary gradient descent is a batch method, very slow, should
never be used. Use 2" order batch method such as LBFGS. On
large datasets, SGD usually wins over all batch methods. On
smaller datasets LBFGS or Conjugate Gradients win. Large-batch
LBFGS extends the reach of LBFGS [Le et al ICML'2011].



Learning Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning

rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g.,

€E0T

T max(t, 7)

with hyper-parameters g, and t.
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Long-Term Dependencies$
omd Clipping Trick

In very deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L =L(sr(sT—1(--St+1(5¢,...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e The solution first introduced by Mikolov is to clip gradients Q
to a maximum value. Makes a big difference in RNNs ()
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Early Stopping

205

Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

Monitor validation error during training (after visiting #
examples a multiple of validation set size)

Keep track of parameters with best validation error and report
them at the end

If error does not improve enough (with some patience), stop.



Paramelber Initializakion

e |nitialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were O (e.g. mean target or
inverse sigmoid of mean target).

e Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units (and 4x bigger for sigmoid units).

Note: for embedding weights, fan-in=1 and we don’t care about
fan-out, Collobert uses Uniform(-1,1).
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Sampled Recownstruction Trick

[Dauphin et al, ICML 2011]

* Auto-encoders and RBMs reconstruct the input, which is

sparse and high-dimensional

code= latent features

C0000

000 @ Ce0 - O

sparse input dense output probabilities
* Applied to bag-of-words input for . ... |7 el
sentiment analysis, with denoising T B S S

auto-encoders

* Always reconstruct the non-zeros

in the input, and reconstruct as many i N_ e

randomly chosen zeros
207
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Part 3.4: Discussion

Discussion: Limitatiowns,
Advantages, Fulure Directions
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Outloolk

e Current strengths and weaknesses
e Representing meaning at different levels
* |nference challenges

e Reaping the benefits of more abstract features: better
transfer, e.g. to other languages
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Criticisms
e Many algorithms and variants (burgeoning field)

 Many hyper-parameters = use multi-core machines,
clusters and random sampling for cross-validation

* Not always obvious how to combine with existing NLP
— learn more abstract features, separate parsing and
semantic analysis, your research here

e Slower to train train linear models = only by a small
constant factor, and much more compact that non-
parametric (e.g. n-gram models)
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Crikicisms

e You're learning everything. Better to encode prior
knowledge about structure of language.

* Wasn’t there a similar machine learning vs. linguists
debate in NLP ~20 years ago....

e Research goal: Just like we now use off-the-shelf SVM
packages, we can try to build off-the-shelf NLP
classification packages that are given as input only raw
text and a label.
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Problems with model in!:erprekabil.f.&v

e Ways to interpret the output of models/ weights on features

* More difficult compared to systems with small sets of hand-designed
features, but possible through low-dimensional projections of word
vectors

e Learning about language through doing nlp
* Can be done by careful visualization, e.g. “flawed” in sentiment analysis

e No discrete categories or words, everything is a continuous vector. We’d like
have symbolic features like NP, VP, etc. and see why their combination
makes sense.

* True, but most of language is fuzzy and many words have soft
relationships to each other. Also, many NLP features are already not
human-understandable (e.g, concatenations/combinations of different
features).
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Inference Challenges

e Many latent variables involved in understanding
language (sense ambiguity, parsing, semantic role)

 Almost any inference mechanism can be combined
with deep learning

e See [Bottou, Bengio, LeCun 97], [Graves 2012]

“l

e Complex inference can be hard (exponentially) and

needs to be approximate = learn to perform inference
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Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Going from symbols to embeddings already helps, and
recent years have shown that phrase and sentence
representations work too, but the space of possibilities
is much wider there

 Higher-level abstractions disentangle the factors of

variation, which allows much easier generalization and
transfer
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Advantages

e Despite a small community in the intersection of deep
learning and NLP, already many state of the art results

on a variety of language tasks

e Often very simple matrix derivatives (backprop) for
training and matrix multiplications for testing

e Fast inference and well suited for multi-core CPUs/GPUs
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Transfer
Learning

e Application of deep
learning could be in areas
where there are not
enough labeled data but
a transfer is possible

e Domain adaptation already showed that effect thanks
to unsupervised feature learning

e Transfer to resource-poor languages would be a great
application [Gouws, PhD proposal 2012]

216



The End
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