Incremental Syntactic Language Models for Phrase-based Translation

Lane Schwartz

Chris Callison-Burch William Schuler Stephen Wu

Air Force Research Lab lane.schwartz@wpafb.af.mil

Johns Hopkins University ccb@cs.jhu.edu

Ohio State University schuler@ling.ohio-state.edu

Mayo Clinic wu.stephen@mayo.edu

Syntax in Statistical Machine Translation

Translation Model vs Language Model

Syntax in the Translation Model

Abeillé et al., 1990; Poutsma, 1998; Poutsma, 2000; Yamada & Knight, 2001; Yamada & Knight, 2002; Eisner, 2003; Gildea, 2003; Hearne & Way, 2003; Poutsma, 2003; Imamura et al., 2004; Galley et al., 2004; Graehl & Knight, 2004; Melamed, 2004; Ding & Palmer, 2005; Hearne, 2005; Quirk et al., 2005; Cowan et al., 2006; Galley et al., 2006; Huang et al., 2006; Liu et al., 2006; Marcu et al., 2006; Zollmann & Venugopal, 2006; Bod, 2007; DeNeefe et al., 2007; Liu et al., 2007; Chiang et al., 2008; Lavie et al., 2008; Mi & Huang, 2008; Mi et al., 2008; Resnik, 2008; Shen et al., 2008; Zhou et al., 2008; Chiang, 2009; Hanneman & Lavie, 2009; Liu et al., 2009; Chiang, 2010; Huang & Mi, 2010; ...

Translation Model vs Language Model

Definition

An incremental syntactic language model uses an incremental statistical parser to define a probability model over the dependency or phrase structure of target language strings.

Definition

An incremental syntactic language model uses an incremental statistical parser to define a probability model over the dependency or phrase structure of target language strings.

- Phrase-based decoder produces translation in the target language incrementally from left-to-right
- Phrase-based syntactic LM parser should parse target language hypotheses incrementally from left-to-right
- Related work:
 - Galley & Manning (2009) obtained 1-best dependency parse using a greedy dependency parser

Definition

An incremental syntactic language model uses an incremental statistical parser to define a probability model over the dependency or phrase structure of target language strings.

- Phrase-based decoder produces translation in the target language incrementally from left-to-right
- Phrase-based syntactic LM parser should parse target language hypotheses incrementally from left-to-right
- Related work:

 Galley & Manning (2009) obtained 1-best dependency parse using a greedy dependency parser

Definition

An incremental syntactic language model uses an incremental statistical parser to define a probability model over the dependency or phrase structure of target language strings.

- Phrase-based decoder produces translation in the target language incrementally from left-to-right
- Phrase-based syntactic LM parser should parse target language hypotheses incrementally from left-to-right
- Related work:
 - Galley & Manning (2009) obtained 1-best dependency parse using a greedy dependency parser

Definition

An incremental syntactic language model uses an incremental statistical parser to define a probability model over the dependency or phrase structure of target language strings.

We use a standard HHMM parser (Schuler et al., 2010)

Engineering simple model, equivalent to PPDA

Engineering linear-time parsing

Algorithmic elegant fit into phrase-based decoder

Cognitive nice psycholinguistic properties

Other parsers Roark (2001), Henderson (2004) Huang & Sagae (2010)

Definition

An incremental syntactic language model uses an incremental statistical parser to define a probability model over the dependency or phrase structure of target language strings.

We use a standard HHMM parser (Schuler et al., 2010)

Engineering simple model, equivalent to PPDA

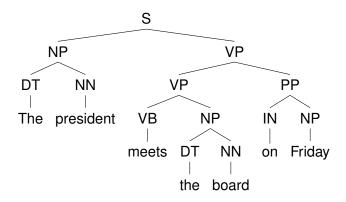
Engineering linear-time parsing

Algorithmic elegant fit into phrase-based decoder

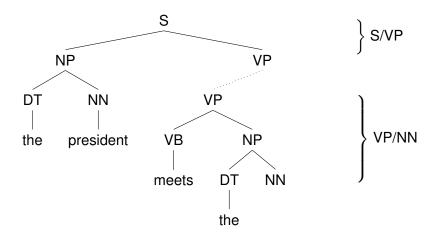
Cognitive nice psycholinguistic properties

Other parsers Roark (2001), Henderson (2004), Huang & Sagae (2010)

Incremental Parsing

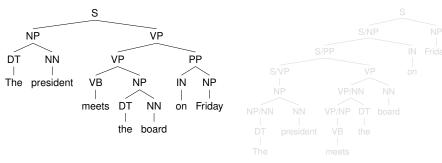


Incremental Parsing



Transform right-expanding sequences of constituents

into left-expanding sequences of incomplete constituents (Johnson 1998



Incomplete constituents can be processed incrementally using a Hierarchical Hidden Markov Model parser. (Murphy & Paskin, 2001; Schuler et al. 2010)

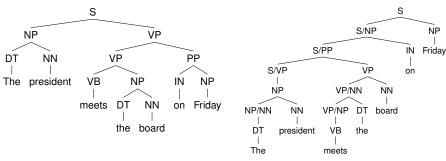
Motivation

Syntactic LM ○○●○○ Decoder Integration

Results 0000

Questions?

Transform right-expanding sequences of constituents into left-expanding sequences of incomplete constituents (Johnson 1998)



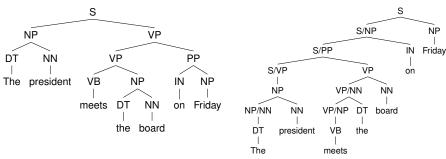
Incomplete constituents can be processed incrementally using a Hierarchical Hidden Markov Model parser. (Murphy & Paskin, 2001; Schuler et al. 2010)

Motivation

Syntactic LM oo●oo Decoder Integration

Results 0000 Questions?

Transform right-expanding sequences of constituents into left-expanding sequences of incomplete constituents (Johnson 1998)



Incomplete constituents can be processed incrementally using a Hierarchical Hidden Markov Model parser. (Murphy & Paskin, 2001; Schuler et al. 2010)

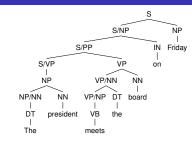
Motivation

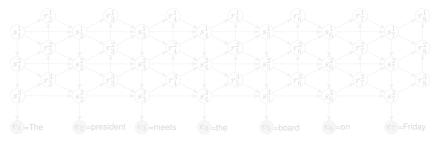
Syntactic LM ○○●○○ Decoder Integration

Results 0000 Questions?

Hierarchical Hidden Markov Model

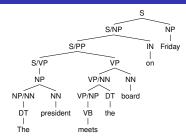
- Circles denote hidden random variables
- Edges denote conditional dependencies
- Shaded circles denote observed values

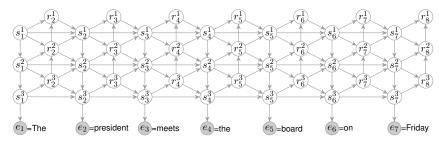




Hierarchical Hidden Markov Model

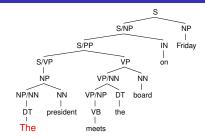
- Circles denote hidden random variables
- Edges denote conditional dependencies
- Shaded circles denote observed values





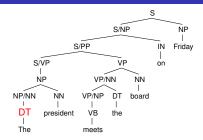
Analogous to "Maximally Incremental" CCG Parsing

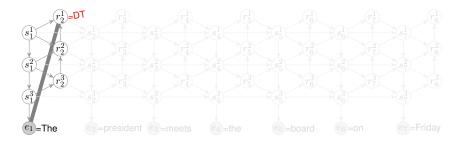
Equivalent to Probabilistic Push-Down Automata



Analogous to "Maximally Incremental" CCG Parsing

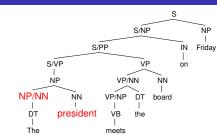
Equivalent to Probabilistic Push-Down Automata

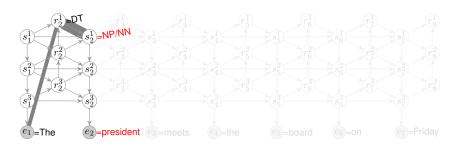




Analogous to "Maximally Incremental" CCG Parsing

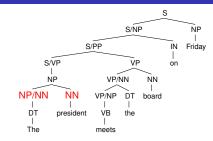
Equivalent to Probabilistic Push-Down Automata

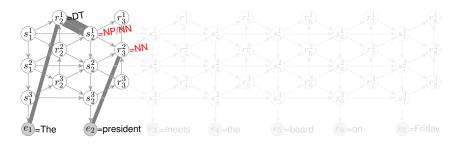




Analogous to "Maximally Incremental" CCG Parsing

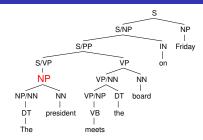
Equivalent to Probabilistic Push-Down Automata

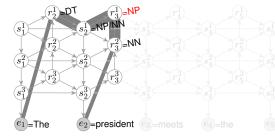




Analogous to "Maximally Incremental" CCG Parsing

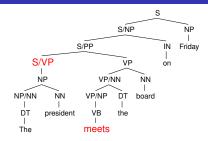
Equivalent to Probabilistic Push-Down Automata

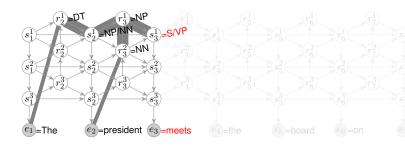




Analogous to "Maximally Incremental" CCG Parsing

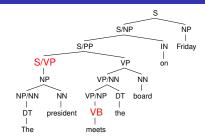
Equivalent to Probabilistic Push-Down Automata

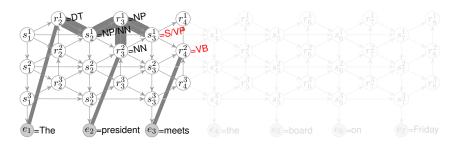




Analogous to "Maximally Incremental" CCG Parsing

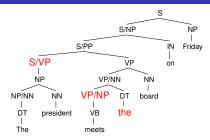
Equivalent to Probabilistic Push-Down Automata

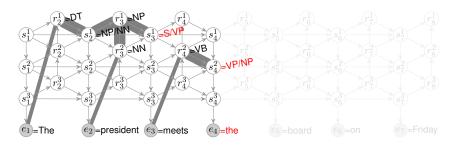




Analogous to "Maximally Incremental" CCG Parsing

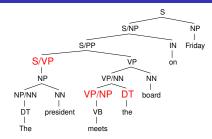
Equivalent to Probabilistic Push-Down Automata

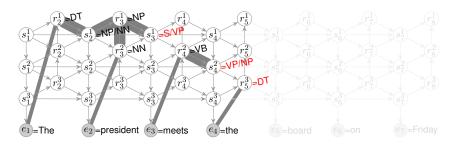




Analogous to "Maximally Incremental" CCG Parsing

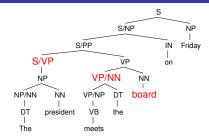
Equivalent to Probabilistic Push-Down Automata

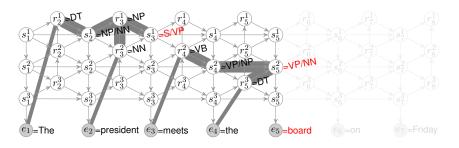




Analogous to "Maximally Incremental" CCG Parsing

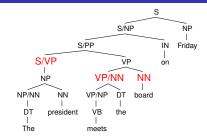
Equivalent to Probabilistic Push-Down Automata

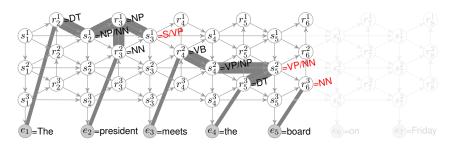




Analogous to "Maximally Incremental" CCG Parsing

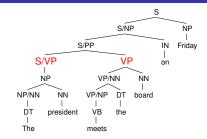
Equivalent to Probabilistic Push-Down Automata

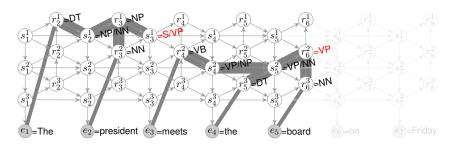




Analogous to "Maximally Incremental" CCG Parsing

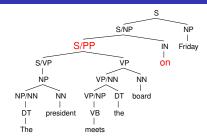
Equivalent to Probabilistic Push-Down Automata

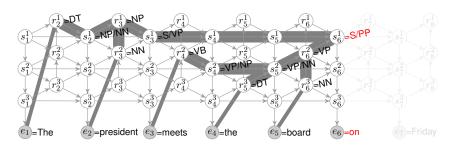




Analogous to "Maximally Incremental" CCG Parsing

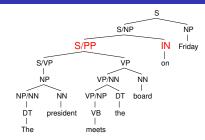
Equivalent to Probabilistic Push-Down Automata

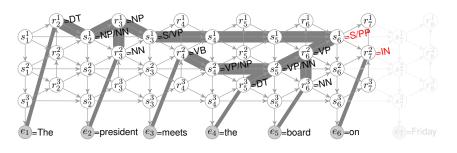




Analogous to "Maximally Incremental" CCG Parsing

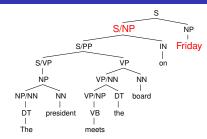
Equivalent to Probabilistic Push-Down Automata

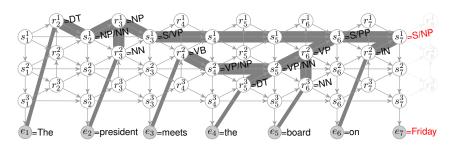




Analogous to "Maximally Incremental" CCG Parsing

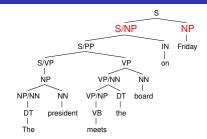
Equivalent to Probabilistic Push-Down Automata

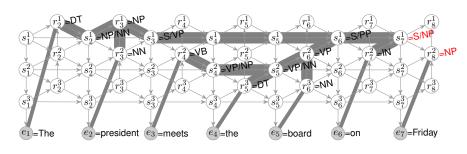




Analogous to "Maximally Incremental" CCG Parsing

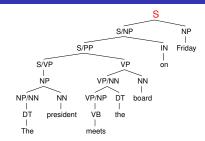
Equivalent to Probabilistic Push-Down Automata

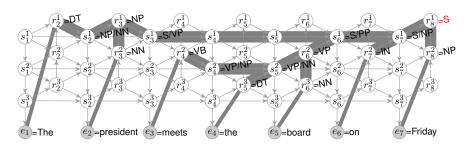




Analogous to "Maximally Incremental" CCG Parsing

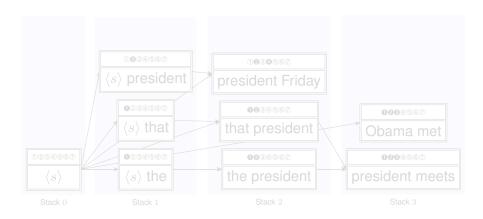
Equivalent to Probabilistic Push-Down Automata





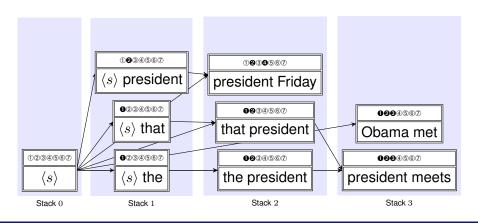
Phrase-Based Translation

Der Präsident trifft am Freitag den Vorstand The president meets the board on Friday



Phrase-Based Translation

Der Präsident trifft am Freitag den Vorstand The president meets the board on Friday

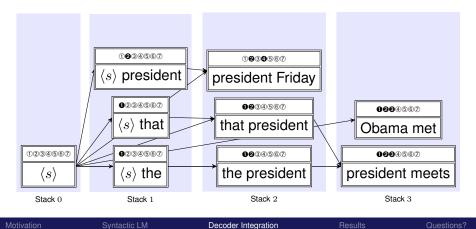


Decoder Integration

Phrase-Based Translation with Syntactic LM

Definition

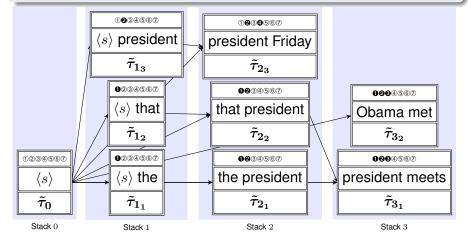
 $\tilde{\boldsymbol{\tau}}_{t_k}$ represents parses of the partial translation at node h in stack t



Phrase-Based Translation with Syntactic LM

Definition

 $ilde{m{ au}}_{t_h}$ represents parses of the partial translation at node h in stack t

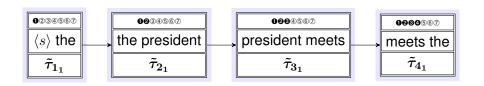


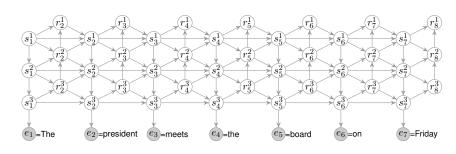
Motivation Syntac

Syntactic LIV ooooo Decoder Integration

Results 0000 Questions?

Integrate Parser into Phrase-based Decoder





Motivatio

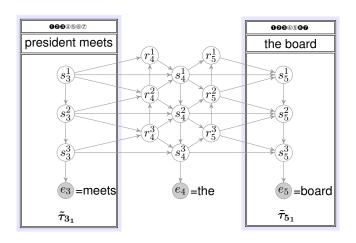
Syntactic LM

Decoder Integration

Results 0000

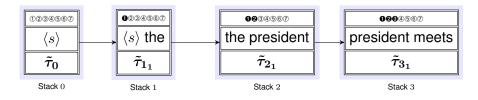
Questions?

Integrate Parser into Phrase-based Decoder



Direct Maximum Entropy Model of Translation

$$\hat{e} = \underset{e}{\operatorname{argmax}} \exp \sum_{j} \lambda_{j} h_{j}(e, f)$$
 $\lambda = \operatorname{Set} \text{ of } j \text{ feature weights}$
 $h = \left\{ egin{array}{l} \operatorname{Phrase-based translation model} \\ n \operatorname{-gram LM} \\ \operatorname{Distortion model} \\ \vdots \\ \operatorname{Syntactic LM P}(\tilde{ au}_{t_{b}}) \end{array} \right.$



Decoder Integration

000000 Incremental Syntactic Language Models for Phrase-based Translation Results

Motivation

That's nice...

but will it make my BLEU score go up?

Perplexity Results

Language models trained on WSJ Treebank corpus

LM	In-domain	Out-of-domain
	Perplexity	Perplexity
WSJ 5-gram LM	232	1262
WSJ Syntactic LM	385	529

Perplexity Results

Language models trained on WSJ Treebank corpus

LM	In-domain	Out-of-domain
	Perplexity	Perplexity
WSJ 5-gram LM	232	1262
WSJ Syntactic LM	385	529
Interpolated	209	225
WSJ 5-gram + WSJ SynLM		

Perplexity Results

Language models trained on WSJ Treebank corpus ...and *n*-gram model for larger English Gigaword corpus.

LM	In-domain Perplexity	Out-of-domain Perplexity
WSJ 5-gram LM	232	1262
WSJ Syntactic LM	385	529
Interpolated	209	225
WSJ 5-gram + WSJ SynLM		
Gigaword 5-gram	258	312
Interpolated	222	123
Gigaword 5-gram + WSJ SynLM		

Motivatior

Syntactic LM

Decoder Integration

Results 0•00

Questions?

That's nice...

but will it make my BLEU score go up?

Moses with LM(s)	BLEU
Using n -gram LM only	18.78
Using <i>n</i> -gram LM + Syntactic LM	19.78

Experiment

- NIST OpenMT 2008 Urdu-English data set
- Moses with standard phrase-based translation model
- Tuning and testing restricted to sentences ≤ 20 words long
- Results reported on devtest set
- n-gram LM is WSJ 5-gram LM

Moses with LM(s)	BLEU
Using n -gram LM only	18.78
Using <i>n</i> -gram LM + Syntactic LM	19.78

Experiment

- NIST OpenMT 2008 Urdu-English data set
- Moses with standard phrase-based translation model
- ullet Tuning and testing restricted to sentences \leq 20 words long
- Results reported on devtest set
- n-gram LM is WSJ 5-gram LM

Summary

- Straightforward general framework for incorporating any Incremental Syntactic LM into Phrase-based Translation
- We used an Incremental HHMM Parser as Syntactic LM
 - Syntactic LM shows substantial decrease in perplexity on out-of-domain data over n-gram LM when trained on same data
 - Syntactic LM interpolated with n-gram LM shows even greater decrease in perplexity on both in-domain and out-of-domain data, even when n-gram LM is trained on substantially larger corpus
 - +1 BLEU on Urdu-English task with Syntactic LM
- All code is open source and integrated into Moses

Questions?

Incremental Syntactic Language Models for Phrase-based Translation

Lane Schwartz

Chris Callison-Burch William Schuler Stephen Wu

Air Force Research Lab lane.schwartz@wpafb.af.mil

Johns Hopkins University ccb@cs.jhu.edu

Ohio State University schuler@ling.ohio-state.edu

Mayo Clinic wu.stephen@mayo.edu

This looks a lot like CCG

Our parser performs some CCG-style operations:

- Forward function application
 - NP/NN NN ⇒ NP
- Type raising
 - NP ⇒ S/VP
- Type raising in conjunction with forward function composition
 - DT \Rightarrow NP/NN
 - VP/NP NP/NN ⇒ VP/NN

Why not just use CCG?

- No probablistic version of incremental CCG
- Our parser is constrained (we don't have backward composition)
- We do use those components of CCG (forward function application and forward function composition) which are useful for probabilistic incremental parsing

Speed Results

Mean per-sentence decoding time

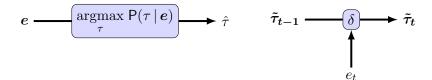
Sentence	Moses	+SynLM	+SynLM
length		beam=50	beam=2000
10	0.2 sec	9 min	19 min
20	0.5 sec	20 min	43 min
30	0.9 sec	29 min	62 min
40	1.1 sec	35 min	76 min

- Parser beam sizes are indicated for the syntactic LM
- Parser runs in linear time, but we're parsing all paths through the Moses lattice as they are generated by the decoder
- More informed pruning, but slower decoding

Phrase-Based Translation with Syntactic LM

Definition

- $oldsymbol{e} \quad \stackrel{ ext{def}}{=} \quad ext{string of } n \text{ target language words } e_1 \ldots e_n$
- $e_t \stackrel{\text{def}}{=}$ the first t words in e, where $t \le n$
- $au_t \stackrel{ ext{def}}{=} ext{set of all incremental parses of } e_t$
- $ilde{ au}_t \ \stackrel{ ext{def}}{=} \ ext{ subset of parses } au_t ext{ that remain after parser pruning}$



Acknowledgments

- This research was supported by NSF CAREER/PECASE award 0447685, NSF grant IIS-0713448, and the European Commission through the EuroMatrixPlus project.
- Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the sponsors or the United States Air Force.
- Paper cleared for public release (Case Number 88ABW-2010-6489) on 10 Dec 2010.
- Presentation cleared for public release (Case Number 88ABW-2011-2970) on 26 May 2011.