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 How do humans communicate so well with language?
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 How do we acquire the knowledge that enables this?
 And how can we get machines to do the same?



Overview of tutorial topics

Human language acquisition (Aida)

e Learning mechanisms

e Word learning: theory & data

e Structure learning: theory & data

Human language comprehension (Roger)

e Doing cognitive science through rational analysis

* Revealing cognitive state with psycholinguistic experiments
e Theory of human language comprehension

Cognitive evaluation of NLP systems (Richard)

Language evolution and emergence (Richard)



Some things to keep in mind today

NLP and cognitive science offer each other a great deal

NLP—cognitive science: formal theory-building for
understanding human language learning & use

Cognitive science—NLP: desiderata for human-like
language processing systems

We've seen impressive science & engineering progress,
but many major open questions & problems remain

There are great opportunities for everyone here!!!
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Language Acquisition in Children

Children effortlessly learn their language from a
noisy and ambiguous input.




“

Language Acquisition in Machines

Understanding language acquisition might help us
build Al systems that understand and produce
natural languages.




Is Language Learned? How?
Is Language Learning Effortless?
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Nurture vs Nature

empiricism

nativism

Knowledge and reason come
from experience.

Language: outcome of how
children are nurtured (like
table manner).

Mind has preexisting structure
to interpret experience.

Language: outcome of nature --
an innate endowment (like
upright posture).



Empiricism vs Nativism

“The human intellect at birth is
rather like a tabula rasa, a pure
potentiality that is actualized
through education and comes to
know. Knowledge is attained
through empirical familiarity with
objects in this world from which
one abstracts universal concepts.”

Fg

Avicenna (980-1037 AD) il

“Language learning is not really
something that the child does; it is
something that happens to the
child placed in an appropriate
environment, much as the child'’s
body grows and matures in a
predetermined way when provided
with appropriate nutrition and
environmental stimulation.”

Chomsky (1928-) AN il



Cognitive Revolution

behaviorism

cognitivism

Can explain behavior in terms
of things external to mind.

Language ~ verbal behavior

Explaining behavior requires
understanding the mind.

Language ~ mental process



“

Domain-General vs Domain-Specific Learning

Domain specific

Language is acquired

I rapidly, effortlessly,
$° and without direct
(& instruction.
- #7 .
Empiricist < @0‘;, - - Nativist

Language is acquired \<°Q>/
using general cognitive ’
skills like memory, 4 4'
capacity for symbolic Sl gerier

representation, and
statistical learning.

[Frank et al, 2019]



Language for Communication

e \J functionalism  formalism

Language is shaped by its Language form is independent
communicative functions. of its function.

Language is acquired through Acquisition of language is not
communication (not passive affected by the fact that we use

observation). it to communicate.
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Takeaways: Development vs Learnability

Modeling language development to shed light on
its underlying mechanism.

Can we learn language (certain linguistic
phenomena) from data?
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Nature of Nature

Investigate the innateness/learnability of

e knowledge -- inborn linguistic knowledge?

e computational procedure -- domain-general or
domain-specific learning mechanism?
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0-12m 12-24m 18-30m 24-48m
prelinguistic single words telegraphic grammatical
communication speech development
"bobo" “mummy” “daddy sleep” “I want some
“doggy” “orange juice” €883
“Put it table”

Takes children 5 years (14,600h, 8h/day).
Would take adults 56 years (2920 weeks, 5h/week).
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“

0-12m 12-24m 18-30m 24-48m
prelinguistic single words telegraphic grammatical
communication speech development
“bobo” “mummy” “daddy sleep”  “I wantsome
“doggy” “orange juice” €883

“Put it table”

Children make errors but learn to correct them.
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Phonology

Lexicon

Grammar

Communication

&

reorganization .
canonical babbling and eonealidation phonological awareness grows
of phonological
vocal play representations phonetic inventory completion
- *— * t t t

50-word productive  500-word productive
recognition of own name vocabulary vocabulary knowledge of
derivational morphology

contributes to vocabulary
first word  word spurt

®- 4 g 4 A $ +
complex (i.e., multiclause) utterances
increasing length of word combinations
adding grammatical morphemes

first word combinations  negatives and question forms

} L i } f
range of distinguishable
communicative purposes narrative skills develop
Srows
intentional communication conversational initiative
begins and responsiveness grow
s , : 4 [Hoff, 2004]

1 year 2 years 3 years 4 years 18



Takeaways

Should Al models make the same mistakes as
children?

Should we model all the domains at the same
time?

19



Is Language Learned? How?

Is Language Learning Effortless?
Learning Mechanisms
Learning about Words
Learning the Structure
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Babies as Statistical Learners saffran et i, science 1996]

8-month-old infants learn within- and between-
word transitional probabilities from novel speech.
e Dbidakupadotigolabutupiropadotibidaku

Statistical learning in other domains: phonology,

synta X, & WOIrdS.Gomez et al, 2000: Mintz et al, 2002: Smith & Yu, 2008: Romberg &
Saffran, 2010]

Statistical learning is domain- & species- general.

21



Babies as Rule Learners marcus et ar science 1999,

Seven-month-old infants can learn simple

“algebra-like” rules.
e “gatiti""lilala” (ABB)or“lilali”“gala ga" (ABA)

Rule learning is statistical learning? icnristiansen & curtin, 1999;

Seidenberg & EIman, 1999; McClelland & Plaut, 1999]
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Babies as Social Learners

Sharing joint attention.
Understanding and sharing intention. momaselio et a;, 20051

Infants learn about phonetics by listening to
native speakers but not their audio/video. xuhi et 2003

23
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Takeaways

What type of learning does each linguistic domain
require?

What modeling frameworks are suitable for each?

24



Is Language Learned? How?

Is Language Learning Effortless?
Learning Mechanisms
Learning about Words
Learning the Structure



Word Learning Stages

Segmenting speech to words.

Mapping a meaning to words.

26
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Context-bound Words

Used only in one context: saying “"duck” only when
hitting the toy to the bathtub. arret, 1986

Are parts of language games.

Function-specific understanding -- different from
adults’ mental representations of words.

27



Proportion of Children Producing

Early Words

&
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http://wordbank.stanford.edu/

Word Learning Errors

Underextension: using words in a more
restricted fashion; “dog” to refer to spaniels.

Overextension: using words more broadly; all
four-legged animals as “doggie”.

e “cat”. cat, cat's usual location on the top of TV
when absent. rescorla, 19801
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Cross-situational Learning

People (as young as 12-month-old infants) are
sensitive to the statistical regularities across

SITUATIONS. [pinker 1989: Yu & Smith 2007: Smith & Yu, 2008]

Look at the zant!

30
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The input is noisy and ambiguous: many possible
mappings/hypotheses for word meanings.

Biases that Guide Word Learning

People learn word meanings from a few
exposures.

Learned/innate biases might facilitate learning.

31



&

Biases that Guide Word Learning

mutual exclusivity bias
[Markman & Wachtel, 1988]

taxonomic bias
[Markman & Hutchinson, 1984; Markman, 1989]

basic-level bias
[Rosch et al, 1976; Markman, 1991]

WhOle'ObjeCt bias [Markman, 1991]
shape bias rsmith & jones, 1988

attention

[Samuelson & smith, 1998;
Yu et al, 2017]

social-pragmatic biases

communicative intentions
[Bloom, 2000; Tomasello, 2001]
following eye gaze
[Baldwin, 1993]

syntax

[Brown, 1957
Gelman & Markman, 1985]

noun bias
[Gentner, 1982]
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The WhO|€-ObJ€Ct BIaS [Markman, 1991]

Learn word labels for the whole object.

33
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The Mutual EXC|USiVity BiaS[Markman & Wachtel, 1988]

18-month children
exhibit the bias.
[Markman et al, 2003]

familiar object unfamiliar object /

Limit the number of possible word labels for a
familiar object.

34



The Basic-Level Bias

Golden Retriever?

> dog (any dog breed)?

, animal?
Cross-situational statistics are consistent with all.

Why dog? A bias that focuses generalization to
the basic-level (cognitively natural) categories.

35
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Syntactic Bootstrapping

Language structure supports learning new verbs.

[Gleitman, 1990; Fisher et al, 1994]

[Naigles, 1990]

The rabbit is gorping the duck.” or “where is gorping now?”

“The rabbit and the duck are gorping.”

36
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Modeling Word Learning

Solving the translation problem: mapping words

to observations. (siskind, 1996; u & Ballard, 2007: Frank et al, 2009; Fazly et al,
2010; Nematzadeh et al, 2015]

“the cat is sitting on the sheep”

objects words

Situations S
[Frank et al, 2009]

=0

37



Is Language Learned? How?

Is Language Learning Effortless?
Learning Mechanisms
Learning about Words

Learning the Structure
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Language is Productive

We have the capacity to produce and understand
an infinite number of new sentences.

Two productive systems:
e Syntax: sentence structure; ordering of words.
e Morphology: structure of words & word parts.

40



Syntax: Level of Abstraction

“Rita drinks milk.”
e Sentence — Rita + drinks + milk (not productive)

® Sentence — agent of action + action + theme

“Rita resembles Ray.”
e Sentence — noun + verb + noun

What is origin of the variables and the rules?

41



Syntax: Type of Structure

Sentences have hierarchical structure.

e “The (clever) cat cried (a river).”
e S— NP+VP, NP — (det) + (adj) + N, VP - V + NP

Is human language use hierarchical? (ranketa, 20121

42



Morphology

Adds grammatical information to words.
e Plural sin English

Children learn morphology earlier when language
is morphologically rich. peters, 19951

Easy morphemes to learn: frequent, fixed form
and relative position to stem, clear function.

43



Do Children Know Grammatical Rules?

Early word combinations are systematic.
e “my teddy” (possessor + possessed)
e “daddy sit” (actor + action)

Overgeneralization errors:
e “I am a good boy, amn't I” (syntax)
e “toothes”; “breaked” (morphology)

44
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Do Children Know Syntactic Rules?

4-year old children can use novel verbs heard in

one Sentence StI’UCture |n OtherS [Pinker et al,1987; Gropen et al,
1991]

“The pig is pilking the horse” — “The horse is being
pilked by the pig”

48
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Do Children Know Morphological Rules? ero, 1958

This is a WUG.

This is a WUG

=4

This is a very tiny WUG. What would

you call a very tiny WUG?
HenRtheneliaianotherior e This WUG lives in a house. What would

There are two of them. you call a house that a WUG lives
There are two - i
e in?

49
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Modeling Structure

Learning abstractions through hierarchical

e p rese ntat| ons. [Alishahi & Stevenson, 2008; Perfors et al, 2009; Barak et al, 2013]
\

Level 3: Over-overhypotheses A

/\ Debbie gave a pretzel to Dean (PD)

Debble gave Dean a pretzel (DOD)
Level 2: Overhypotheses

A\ /I\ constructions k k,
Level 1: Verb-level 9! 9° 0’ o* o

distribution

1 2 3 4 5 5
y y y y y y

(take)  (say) (send) (give) (throw) (bring)

verbs
D pppp | (PDPD| | PD | [DOD PD| |[DOD| |[DOD PD
ata PD PD |PD PD| | PD | |PD DOD PD PD DOD
PD PD | | PD PD PD DOD | | PD DOD DOD

[Perfors et al 2@] [Alishahi & Stevenson, 2008]

51



Generalization to Test Linguistic Knowledge

Children’s knowledge of language is examined by
generalization tasks:

e Mapping novel words to new/familiar objects.
e Using a new verb in “unheard” structures.

e Applying morphological rules to new words.

Can Al models pass these generalization tasks?

53
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Nature of Nature Tha N kS?‘

Abstract knowledge (priors/inductive
biases/constraints) guides our generalization.

What are the origins of our abstract knowledge?
Can it be learned from experience?

54



Language learning and processing
in people and machines

Part |l: Human language processing

Aida Nematzadeh, Richard Futrell, and Roger Levy



Goals of part |l of tutorial

e Overview of human language processing
* Theoretically deep questions about language and mind

e Helps establish long-term benchmarks for human-like Al
systems for language

e Main points:
 How we can study human language processing
e First-cut theory

 Limitations for first-cut theory:
 Memory considerations
» Character of input representations

 More advanced theory
e Open frontiers



Structure and surprise
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Structure and surprise

The woman brought the sandwich from the kitchen tripped.
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Structure and surprise

The woman who was given the sandwich from the kitchen tripped.



Structure and surprise

The woman given the sandwich from the kitchen tripped.



Structure and surprise

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.



Structure and surprise

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.



Structure and surprise

The

The

The

The

woman brought the

woman brought the

woman given the

woman given the

sandwich from the kitchen tripped.

sandwich from the kitchen tripped.

sandwich from the kitchen tripped.

sandwich from the kitchen tripped.



Structure and surprise

The

The

The

The

woman brought the

woman brought the

woman given the

woman given the

sandwich from the kitchen tripped.

sandwich from the kitchen tripped.

sandwich from the kitchen tripped.

sandwich from the kitchen tripped.

Simple past Past participle
bring brought brought

give

gave



Structure and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

Simple past Past participle
bring brought brought

give gave
Meaning can help us avoid surprise, too:

The evidence examined by the lawyer from the firm was unreliable.
3



Anatomy of v¢ 0loe garden path sentence

The woman brought the sandwich from the kitchen tripped.

(c.f. The horse raced past the barn fell, Bever, 1970)



Anatomy of v¢ 0loe garden path sentence

e Classic example of incrementality in comprehension

The woman brought the sandwich from the kitchen tripped.

(c.f. The horse raced past the barn fell, Bever, 1970)
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Anatomy of v¢ 0loe garden path sentence

e Classic example of incrementality in comprehension

“Main Verb” S “Reduced Relative”

A

NP VP

e —— .

The woman brought the sandwich from the kitchen tripped.

(c.f. The horse raced past the barn fell, Bever, 1970)



Anatomy of v¢ 0loe garden path sentence

e Classic example of incrementality in comprehension

“Main Verb” S “Reduced Relative”

A

NP VP

e —— .

The woman lbrought the sandwich from the kitchen tripped.

(,WhO Was‘)

(c.f. The horse raced past the barn fell, Bever, 1970)



Anatomy of v¢ 0loe garden path sentence

e Classic example of incrementality in comprehension

“Main Verb” S “Reduced Relative”

A

NP VP

e —— .

The woman brought the sandwich from the kitchen tripped.

(c.f. The horse raced past the barn fell, Bever, 1970)



Anatomy of v¢ 0loe garden path sentence

e Classic example of incrementality in comprehension

“Main Verb” S “Reduced Relative”

—

NP VP

‘L

The woman brought the sandwich from the kitchen tripped.

e People fail to understand it most of the time

(c.f. The horse raced past the barn fell, Bever, 1970)



Anatomy of e oloe garden path sentence
e Classic example of incrementality in comprehension

“Main Verb” S “Reduced Relative”

NP VP
I _

The woman brought the sandwich from the kitchen tripped.

e People fail to understand it most of the time

* People are likely to misunderstand it—e.g.,

 The woman who brought the sandwich from the kitchen
tripped

 The woman brought the sandwich from the kitchen and tripped
e “What's a kitchen tripped?”

(c.f. The horse raced past the barn fell, Bever, 1970)



Measuring human incremental processing state

 Eye movements in the visual world

* Word-by-word reading times
o Self-paced reading
 Eye movements during natural reading

e Recordings of brain activity
 Electrophysiological (EEG/ERP)
 Magneto-encephalography (MEG)
 functional Magnetic Resonance Imaging (fMRI)
e Electrocorticography (ECoG)
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Measuring human incremental processing state

 Eye movements in the visual world

* Word-by-word reading times
e Self-paced reading Behavioral
 Eye movements during natural reading

e Recordings of brain activity R
 Electrophysiological (EEG/ERP)

» Magneto-encephalography (MEG) Neural
 functional Magnetic Resonance Imaging (fMRI)

e Electrocorticography (ECoG)




Eye movements in the visual world
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Eye movements in the visual world
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A visual world experiment

Eye camera

Scene camera

(Slide courtesy of Mike Tanenhaus) Allopenna, Magnuson & Tanenhaus (1998) s



A visual world experiment

Eye camera

Scene camera

Instruction to experimental participant:

(Slide courtesy of Mike Tanenhaus) Allopenna, Magnuson & Tanenhaus (1998) s



A visual world experiment

Eye camera

|
. 4.%,/, |
" x.a
61. —

Scene camera

Instruction to experimental participant:

“Pick up the beaker”

(Slide courtesy of Mike Tanenhaus) Allopenna, Magnuson & Tanenhaus (1998) s



Data from human eye movements

Target = beaker
Cohort = beetle

(Slide courtesy of Mike Tanenhaus)
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Data from human eye movements
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Allopenna, Magnuson & Tanenhaus (1998)
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Self-paced reading

(Mitchell, 1984)
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e Participant presses a button to reveal each successive
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(Mitchell, 1984)
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Self-paced reading

e Participant presses a button to reveal each successive
word and mask previous words:

e Readers aren’t allowed to backtrack

e Duration between button presses="reading time” for each
word

(Mitchell, 1984) 11



Language processing signal from the eyes

Were are advantages and disadvantages of both alectronic and hardcopy

journals. Hardcopy journals are more easily browsed, more portable and, of

course people are very much used o ther format.  Electronic journals save

on paper and their format has improved considerably over the past few

years, but there are sté probleme over managing copynight restrictions and

persuading people to use electronic instead of hardcopy journals. There is

also the problem of portabdity. More and mare journsls are now beeng

published in electromc format, although some publishers will only let you (movie b)’ Piers
subscribe 1o an electronic jcumal provided you also subscribe 1o the .
hardcopy (more money for the same thing). Some electronic journals cos! Co rnellssen)
over 100% more than their equivalent hardcopy With all these factors in

mind | have been discussing individual and shared-subscripbions with the

Biochermistry Depariment, the RSL and Blackwell's. Whilst | feed that a

move from hardcopy 1o electirenic journals will be a very slow process n the

ULP Library. electronic publishing is being carefully mondtored and | would

hope to intreduce a few electronic lexts inlo the Library alongside the

journals which are already available for free over the Intermet.

Leaves a fine-grained trace of the real-time language comprehension record
— we will put this to use later in the tutorial!

(Rayner, 1998) 12
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Electroencephalography (EEG/ERP)

NSRS ;o'.b'.'f'l‘)
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The N400 ERP component in language comprehension

 Differing degrees of semantic congruity:
e He took a sip from the drink. (normal)
e He took a sip from the waterfall. (moderate incongruity)
* He took a sip from the transmitter. (strong incongruity)

(Kutas & Hillyard, 1980, 1984)

15



The P600 ERP component in language comprehension

(Osterhout et al., 1997; see also reading time studies by Sturt, 2003; Duffy & Keir, 2004, inter alia) 16
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fMRI recordings during comprehension

 MRI measures changes in brain

associated with blood flow

e Slow, but good spatial resolution

for which parts of the brain are
active in processing

Sentences condition

A RUSTY || LOCK WAS || FOUND IN THE ||DRAWER * ;OE%/
Nonwords condition
DRELLO
DAP ||DRELLO|| sMmoP UB PLID KAV CRE | [REPLODE + NUZZ
Expt 3 (Verbal WM): Sample trial (hard condition) Response Feedback
o+ i i I 36241853
three six | |two four| |one eight| [five three 30241853 /x

(Fedorenko et al., 2011)




Functional brain specificity for language

Language and Verbal WM

1.6
1.2
0.8
0.4
0
-0.4

(Fedorenko et al., 2011)

Overlap region within the
LIFG language ROI

.Senlences

Nonwords

.Hard Verbal WM
DEasy Verbal WM

Language-selective
portion of the LIFG
language ROI
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Electrocorticography

e Pre-surgical epilepsy patients get electrode arrays directly
implanted on the surface of the cortex

Sensory area
\

Motor area

Surgical opening

Electrocorticography

https.://commons.wikimedia.org/wiki/
File:Intracranial_electrode_grid_for_electrocorticography.png

http://med.stanford.edu/neurosurgery/research/NPTL/research2/_jcr_content/main/panel_builder/panel_0/text_image.img.620.high.png

e During pre-surgical monitoring many patients generously
donate their energy & attention for experiments .


http://med.stanford.edu/neurosurgery/research/NPTL/research2/_jcr_content/main/panel_builder/panel_0/text_image.img.620.high.png
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Neural consonant representations
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Scientific opportunity:

Comprehensive theory to account for patterns of
human language use & representation

Engineering opportunity:

Better prediction of human language understanding,
and more human-like Al language-using agents



Rational analysis

e Background assumption: cognitive agent is optimized via
evolution and learning to solve everyday tasks effectively

Specify precisely the goals of the cognitive system
Formalize model of the environment adapted to

Make minimal assumptions re: computational limitations
Derive predicted optimal behavior given 1—3

Compare predictions with empirical data

If necessary, iterate 1—5

o0k w0~

(Anderson, 1990, 1991) 23



Incrementality and Rationality

Real-time language understanding is hard

But lots of information sources can be usefully brought to
bear to help with the task

Therefore, it would be for people to use
, whenever possible

This is what IS
We have lots of evidence that people do this often

Eé\' il
| + D,B'

“Put the apple on the towel in the box.” (Tanenhaus et al., 1995, Science)

24



® Enter probabilistic grammars from
computational linguistics...



Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFQG) consists of a tuple
(N, V,S, R, P) such that:

» N is a finite set of non-terminal symbols;

» V is a finite set of terminal symbols;

» Sis the start symbol;

» R is a finite set of rules of the form X — o where X € N
and « is a sequence of symbols drawn from N U V/;

» P is a mapping from R into probabilities, such that for each
X e N,

Y PX—a)=1

[X—a]eR

PCFG derivations and derivation trees are just like for CFGs.
The probability P(T) of a derivation tree is simply the product of
the probabilities of each rule application.



Example PCFG

1 S —NP VP 1 Det — the
0.8 NP —Det N 05 N —dog
0.2 NP —NP PP 05 N —cat
1 PP —P NP 1 P —% near
1 VP —V 1 V — growled
S
/\
0.2 NP VP
— — |
0.8 NP PP V
R — |
Det N P NP growled
05 1 AU
the dog near Det N
I | 0.5
the cat

P(T)=1x02x08x1x05x1x1x08x1x05x1x1
= 0.032



1 Det — the
2 NP — Det N 2 N —dog
% NP — NP PP z N — cat
1 PP —=PNP 1 P — near

Incrementality: you can think of a partial tree as marginalizing over all
completions of the partial tree.

It has a corresponding marginal probability in the PCFG.

NP NP NP
Det N NP PP NP PP
the dog Det N P NP Det N P NP
the dog near Det N the dog near Det N
the dog the cat
4 4
9 81 81
NP NP
NP PP NP PP
Det N P NP Det N
the dog near Det N the dog
the
12 4

81 27



A zeroth-cut theory of incremental comprehension

 Human knowledge described by a probabilistic grammar

1
0.8
0.2
1
1

S —NPVP 1 Det — the

NP —Det N 05 N —dog
NP —NP PP 05 N —cat

PP —P NP 1 P — near
VP —V 1 V — growled

e |Incremental input interpretation follows Bayes Rule:

(Jurafsky, 1996)

P(T |words) « P(words | T)P(T)

29



Strong garden-pathing

(Levy, Reali, & Griffiths, 2009)
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Strong garden-pathing

NP/N
N
Det N V/k

I | I
the woman  brought

Det N /&
the woman am

brought

The woman brought

(Levy, Reali, & Griffiths, 2009)



Strong garden-pathing

NP/N
N
Det N V/k

I | I
the woman brought

Det N /&
the woman am

brought

The woman brought the sandwich

(Levy, Reali, & Griffiths, 2009)
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Strong garden-pathing

S
i L —
NP VP
N _ N
Det N V NP

| | | T~
the Det N

woman  brought
I I

the sandwich

S

N—P/\
NP RC ——
~ — o~
Det N VP —
the woman Part NP

! /\
brought Det N —

| |
the sandwich

The woman brought the sandwich

(Levy, Reali, & Griffiths, 2009)
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Strong garden-pathing

S
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NP VP
N _ N
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S
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NP RC p—
~T~ /\
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Strong garden-pathing

S
~—
NP VP o
Det N Vv NP PP ——
the woman brought Det N P NP

| | | N
the Det N

sandwich  from
I I

the  kitchen
S
/\
NP
NP RC —

S /\
Det N VP —

|
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' — — TS
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| | | /\
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| |
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Strong garden-pathing

Det N VP tripped
the woman Part NP PP
brought Det N P

the sandwich from

NP
Det N

the kitchen

The woman brought the sandwich from the kitchen tripped.

(Levy, Reali, & Griffiths, 2009) 30



Strong garden-pathing

NP RC
N | |
Det N VP tripped
T
the woman Part NP PP
RN N
brought Det N P

the sandwich from

NP
Det N

the kitchen

Comprehension only successful if the earlier-
disfavored interpretation is still available!!!

The woman brought the sandwich from the kitchen tripped.

(Levy, Reali, & Griffiths, 2009) 30
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A first-cut theory of incremental comprehension:

« Stick with probabilistic grammars and Bayesian inference
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A first-cut theory of incremental comprehension:

Stick with probabilistic grammars and Bayesian inference

But let a word’s difficulty be its surprisal given its context:
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Surprisal(w;) =

~ log

Captures the expectation intuition: the more we expect an
event, the easier it is to process

e Brains are prediction engines!
my brother came inside to... chat? wash? get warm?

the children went outside fto...

* Predictable words are read faster (Ehrlich & Rayner, 1981) and
have distinctive EEG responses (Kutas & Hillyard 1980)

Probabilistic grammars give grammatical expectations
(Hale, 2001, NAACL; Levy, 2008, Cognition) 32



Surprisal (bits)

The surprisal graph
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A small PCFG for this sentence type
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— NP Conj NP

0.3
0.7
0.3
0.7
0.6

0.2
0.2

Conj — and

Det — the
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N — dog

N — vet

N  — assistant
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N — owner

1
0.8
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0.1
0.2
0.2
0.2
0.2
0.2

Ad] — new 1
VP — V NP 0.5
VP —V 0.5
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COMMA — | 1
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Two Incremental trees

e “Garden-path” analysis:
Disambiguating word probability

S . . .
o marginalizes over incremental trees:
/\ /\
COMPL S NP VP
1 —— e 1
When NP VP V
/\ /\
Det N Vv NP
1o 1 e —
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e Ultimately-correct analysis : §
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Det N V Det N and Det Adj N
1 1 1 1 1 1 1 1
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Preceding context can disambiguate

* ‘its owner” takes up the object slot of scratched

SBAR S
— e ——— — —
COMPL S NP VP
1 —— B 1
When NP VP NP  Conj NP \%
. _— N 1 — —
Det N \% NP Det N and Det Adj N
[ | 1 N 1 11 I
the dog scratched Det N  the vet his new assistant

] ]
its owner

Condition  Surprisal at Resolution

NP absent 4.2
NP present 2
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Sensitivity to verb argument structure

A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

(c.f. When the dog scratched the vet and his new assistant removed the muzzle.)

(Staub, 2007)
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Modeling argument-structure sensitivity
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e The “context-free” assumption doesn’t preclude relaxing probabilistic
locality:

(Johnson, 1998; Klein & Manning, 2003)



Modeling argument-structure sensitivity

S — SBAR S 0.3 | Conj — and 1 | Adj — new 1
S — NP VP 0.7 | Det — the 0.8 |[[VP — V NP 0.5
SBAR — COMPL S 0.3 | Det — its 0.1 |VP —V 0.5
SBAR — COMPL S COMMA 0.7 | Det — his 01|V — scratched 0.25
COMPL — When 1/ N — dog 02 |V — removed  0.25
NP — Det N 06 | N — vet 0.2 |\V — arrived 0.5
NP — Det Adj N 02| N — assistant 0.2 | COMMA — |, 1
NP — NP Conj NP 02| N — muzzle 0.2

N — owner 0.2

e The “context-free” assumption doesn’t preclude relaxing probabilistic
locality:

(Johnson, 1998; Klein & Manning, 2003)



Modeling argument-structure sensitivity

S — SBAR S 0.3 | Conj — and 1 | Adj — new 1
S — NP VP 0.7 | Det — the 0.8 |[[VP — V NP 0.5
SBAR — COMPL S 0.3 | Det — its 0.1 |VP —V 0.5
SBAR — COMPL S COMMA 0.7 | Det — his 01|V — scratched 0.25
COMPL — When 1/ N — dog 02 |V — removed  0.25
NP — Det N 06 | N — vet 0.2 |\V — arrived 0.5
NP — Det Adj N 02| N — assistant 0.2 | COMMA — |, 1
NP — NP Conj NP 02| N — muzzle 0.2

N — owner 0.2

e The “context-free” assumption doesn’t preclude relaxing probabilistic
locality:

VP — V NP 0.5 VP — Vtrans NP 0.45
VP — V 0.5 VP — Vtrans 0.05
V s scratched 0.25 | Replaced by | yp — Vintrans 0.45
V — removed 0.25 = VP — Vintrans NP 0.05
V — arrived 0.5 Vtrans — scratched 0.5

Vtrans — removed 0.5

Vintrans — arrived 1

(Johnson, 1998; Klein & Manning, 2003)



Result

When the dog arrived the vet and his new assistant removed the muzzle.

When the dog scratched the vet and his new assistant removed the muzzle.

Transitivity-distinguishing PCFG
Condition Ambiguity onset Resolution
Intransitive (arrived) 2.11 3.20
Transitive (scratched) 0.44 8.04



Surprisal vs. predictability in general

1

lo
® P(w;| CONTEXT)
1

P(wi|w1...i_1)

Surprisal(w;) =

~ log

e But is there evidence for surprisal as the specific function
relating probability to processing difficulty?

(Smith & Levy, 2013) 40



Estimating probability/time curve shape
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Estimating probability/time curve shape

e As a proxy for “processing difficulty,” reading time in two
different methods: self-paced reading & eye-tracking

e Challenge: we need big data to estimate curve shape, but
probability correlated with confounding variables

Brown data availability Dundee data availability

log Frequency

| (5K words)

I ( 50K WOde) e

log Frequency
5
1

log Probability log Probability 41



Hypothesized curve shapes

Reading time

Proposed relationships between
predictability and reading time

R = cmmmm e .
' ' Linear .
' \ (guessing) -
' \ \
\ \
' \
|}
-. * Super-logarithmic
: Logarithmic \ (could explain UID effects)
\  (optimal visual '
\ discrimination, \
\ highly incremental \

\ processing) \

\ \

“ \

\ \

\ \

l‘ \

\ Reciprocal .

\ (hypothesized by

. Narayanan & Jurafsky, 2004)

S -
-
----------------------------

Probability (log scale)

42



Estimating probability/time curve shape

e GAM regression:
total tributi Reading times in Gaze durations in
Otal contribution self-paced reading eye-tracking

of word (trigram) g [ _
probability to RT ‘
near-linear over

6 orders of
magnitude! 2

Total amount of slowdown (ms)
20

0

(Smith & Levy, 2013; more recent — T — T T
validation by Goodkind & Bicknell,

10 10° 10* 102 102 10" 1 10°10° 10™* 102 102 107" 1
2018)

P(word |context) P(word |context) 43



Integration with deep learning

 Humans condition extremely flexibly on context
e Goal: symbolic grammars + neural generatization

 Enabling step: action sequence for structure building

S
NP VP

\/\

the hungry cat chased NP
I

(S (NP the hungry cat ) (VP chased (NP me)))

me

Action Meaning String gloss
NT(X) Push a new open non-terminal on top of the stack (X
Gen(w) Generate word w as a terminal node and put it on top of W
the stack (as a closed node)
REDUCE Pop closed nodes Ny.. i1 from the top of the stack until )

encountering open node Nj; close Ni

END Finish parsing (iff the sole stack element is a closed S) n/a

44
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(S (NP the hungry cat) (VP chased (NP me)))
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(S (NP the hungry cat) (VP chased (NP me)))
4 S )

NP VP

Action Stack — ! — —_—
NT(S) (S the  hungry cat chased NP
NT(NP) (S| (NP |

me
Gen(the) (S|(NP|the \_ )
Gen(hungry) (S| (NP | the | hungry
Gen(cat) (S | (NP | the | hungry | cat
REDUCE (S | (NP the hungry cat )
NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased
NT(NP) (S | (NP the hungry cat ) | (VP | chased | (NP

Gen(me) (S | (NP the hungry cat ) | (VP | chased | (NP | me

REDUCE (S | (NP the hungry cat ) | (VP | chased | (NP me )

REDUCE (S | (NP the hungry cat ) | (VP chased (NP me ) )

REDUCE (S (NP the hungry cat ) (VP chased (NP me ) ))
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(S (NP the hungry cat) (VP chased (NP me)))

Action
/NT(S)
NT( NP)
Gen(the)
Gen(hungry)
Gen(cat)
REDUCE
NT(VP)
Gen(chased)
NT(NP)
Gen(me)
REDUCE
REDUCE
REDUCE

~

\END

4 )

S
NP VP
Stack — ! — —
(S the  hungry cat chased NP
I
(S| (NP
(S|(NP|the \_ me)

(S | (NP | the | hungry

(S | (NP | the | hungry | cat

(S | (NP the hungry cat )

(S | (NP the hungry cat ) | (VP
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(S (NP the hungry cat) (VP chased (NP me)))

If we put a conditional probability
distribution on actions, we have a ( S \
probabilistic grammar!
/ NP VP
Action Stack — ! — —
ATE) O\ (S the hungry cat chased NIP
NT(NP) (S| (NP me
Gen(the) (S|(NP|the \_ )

Gen(hungry) | (S | (NP | the | hungry
Gen(cat) (S | (NP | the | hungry | cat
REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) | (S | (NP the hungry cat ) | (VP | chased
NT(NP) (S | (NP the hungry cat ) | (VP | chased | (NP

Gen(me) (S | (NP the hungry cat ) | (VP | chased | (NP | me
REDUCE (S | (NP the hungry cat ) | (VP | chased | (NP me )
REDUCE (S | (NP the hungry cat ) | (VP chased (NP me ) )
REDUCE (S (NP the hungry cat ) (VP chased (NP me ) ))

\END 45




NP VP
— 1 — /
Action Stack the  hungry cat chased
NT(S) (S
NT(NP) (S | (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)
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NP VP
— 1 — /
Action Stack the  hungry cat chased
NT(S) (S
NT(NP) (S | (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

Gen(away)

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)
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NP
the hungry  cat

Action Stack
NT(S) (S
NT(NP) (S| (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

Gen(away)

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)

VP

—_— NN
chased away
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Action Stack
NT(S) (S
NT(NP) (S| (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

Gen(away) REDUCE NT(PP)

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)
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Action Stack the  hungry cat chased
NT(S) (S
NT(NP) (S | (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

Gen(away) REDUCE NT(PP) NT(NP)

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)
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NP
the hungry cat

Action Stack
NT(S) (S
NT(NP) (S| (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

Gen(away) REDUCE NT(PP) NT(NP)

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)
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NP VP
— 1 — /\
Action Stack the hungry cat chased NP
NT(S) (S
NT(NP) (S| (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chased

(222 )

Gen(away) REDUCE NT(PP) NT(NP)

Knowledge characterization: P(actionlcontext)
(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)
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NP VP
— I — ——
Action Stack \the hungry cat chased (NP ]
NT(S) (S ]
NT(NP) (S| (NP

Gen(the) (S| (NP | the

Gen(hungry) (S| (NP | the | hungry

Gen(cat) (S| (NP | the | hungry | cat

REDUCE (S | (NP the hungry cat )

NT(VP) (S | (NP the hungry cat ) | (VP
Gen(chased) (S| (NP the hungry cat) | (VP | chase

(222 ) —

Gen(away) REDUCE NT(PP) NT(NP)

Hidden

Input
Output

Knowledge characterization: P(actionlcontext)

(Henderson, 2003; Dyer et al. 2016; Kuncoro et al., 2017)

46



Recurrent Neural Network Grammars (RNNGs)

NT(S) NT(NP) GEN(The) GEN(hungry) GEN(ca) REDUCE NT(VP) !

S
PN
NP VP
I

The hungry cat

N

GEN(meows)

&
<«

cat hungry The

-—

-—

>

>

—>

T
NT(S)

(Dyer et al., 2016; f/ f/

Kuncoro etal., 2017) ~ NP The hungry cat NP

|

NT(NP) GEN(iungry) REDUCE

GEN(7%e)

4

|

?

GEN(ca?)

|

?
NT(VP)

Stack

Evidence of human-like language processing:
Kuncoro et al., 2018 (ACL)
Hale et al., 2018 (ACL)

History

Futrell et al., 2019 (NAACL)
Wilcox et al., 2019 (NAACL)
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(S
(S
(S
(S
(S
(S

An inferential challenge

(NP
(NP
(NP
(NP
(NP
(NP

1
1
1
1
1
1

) (VP saw (NP the I saw the
) (VP saw (NP (NP the I saw the
) (VP saw (S (NP the I saw the
) (VP saw (S (NP (NP the I saw the
) (VP saw (SBAR (NP the I saw the

) (VP saw (SBAR (NP (NP the I saw the

There is a potentially unbounded number of tree-

child

child’s dog

child leave
child’s dog leave
child left

child’s dog left

generation operations just to get to the next word!
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Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
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Context C log P(A| C)
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Inference using beam search

Context C log P(A|C) Rank on beam
(S (NP I ) (VP saw (NP the -5.1 1
(S (NP I ) (VP saw (NP (NP the -6.3 4
(S (NP I ) (VP saw (S (NP the -5.8 2
(S (NP I ) (VP saw (S (NP (NP the -7.2 X
(S (NP I ) (VP saw (SBAR (NP the -6.2 3
(S (NP I ) (VP saw (SBAR (NP (NP the -7.8 X

A “word-synchronous” beam, beam size=4

Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):

The needed analysis “falls off the beam”

(Stern et al., 2017) 49



Challenges for surprisal theory

* Limitations in the memory representations available
during real-time comprehension

e Accounting for input uncertainty from noise & speaker
error
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Structural Forgetting and the Noisy Channel
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Structural Forgetting and the Noisy Channel

1. The apartment that the maid who the cleaning service sent over
was well-decorated.

2. The apartment that the maid who the cleaning service sent over
cleaned was well-decorated.
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Structural Forgetting

1. *The apartment that the maid who the cleaning service

sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <°
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Structural Forgetting

1. *The apartment that the maid who the cleaning service

sent over was well-decorated. «&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <°

//\

NP VP
NP /CP\ was well decorated
the apartment T /S\
that NP VP

NP /CP\ cleaned

the maid € S

TN

who NP VP

AN

the cleaning service sent over
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///\

NP VP
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Structural Forgetting

1. *The apartment that the maid who the cleaning service
sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. \?

///\

NP VP

/\

NP CcP
was well decorated

A/\

S

the apartment C|

NP VP

that P | ol llololy)

NP cpP

A/\

S

the maid T /\

who NP VP

AN

the cleaning service sent over
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Structural Forgetting

1. *The apartment that the maid who the cleaning service

sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <

» Structural forgetting effect: part of the sentence is forgotten by
the time you get to the end (Gibson & Thomas, 1999; Frazier, 1985;

Fodor, p.c.)
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Structural Forgetting

1. *The apartment that the maid who the cleaning service
sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <

» Structural forgetting effect: part of the sentence is forgotten by
the time you get to the end (Gibson & Thomas, 1999; Frazier, 1985;
Fodor, p.c.)

 The ungrammatical sentence seems better than the grammatical
one.

* A 'grammaticality illusion": how could we define
grammaticality in this case?
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Structural Forgetting

1. *The apartment that the maid who the cleaning service

sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <°
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Structural Forgetting

1. *The apartment that the maid who the cleaning service

sent over was well-decorated. &

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. ‘U‘E

» But the effect is language-dependent (Vasishth et al., 2010;
Frank et al., 2016).
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Structural Forgetting
1. *Die Wohnung, die das Zimmermédchen, das der
Reinigungsdienst iibersandte, war gut eingerichtet. <

2. Die Wohnung, die das Zimmermadchen, das der
Reinigungsdienst iibersandte, reinigte, war gut eingerichtet. <&

» But the effect is language-dependent (Vasishth et al., 2010;
Frank et al., 2016).

* |In German (and Dutch), people prefer 2 over 1.
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54



Structural Forgetting

1. *Die Wohnung, die das Zimmerméidchen, das der
Reinigungsdienst iibersandte, war gut eingerichtet. <
2. Die Wohnung, die das Zimmermadchen, das der

Reinigungsdienst iibersandte, reinigte, war gut eingerichtet. <&

» But the effect is language-dependent (Vasishth et al., 2010;
Frank et al., 2016).

In German (and Dutch), people prefer 2 over 1.

* What is the difference between English and German?

* Frank et al. (2016) show that at recurrent neural network gives
higher probability to (1) in English, but (2) in German.
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Structural Forgetting

1. *Die Wohnung, die das Zimmerméidchen, das der
Reinigungsdienst iibersandte, war gut eingerichtet. <
2. Die Wohnung, die das Zimmermadchen, das der

Reinigungsdienst iibersandte, reinigte, war gut eingerichtet. <&

» But the effect is language-dependent (Vasishth et al., 2010;
Frank et al., 2016).

In German (and Dutch), people prefer 2 over 1.

* What is the difference between English and German?

* Frank et al. (2016) show that at recurrent neural network gives
higher probability to (1) in English, but (2) in German.
e But why?
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Structural Forgetting

1. *The apartment that the maid who the cleaning service
sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. '\5
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Structural Forgetting

1. *The apartment that the maid who the cleaning service
sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <

e These contexts are more common in German than English (Roland
et al., 2007).
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et al., 2007).
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Structural Forgetting

1. *The apartment that the maid who the cleaning service
sent over was well-decorated. <&

2. The apartment that the maid who the cleaning service
sent over cleaned was well-decorated. <

e These contexts are more common in German than English (Roland
et al., 2007).

e English: the maid [that cleaned the apartment] 80%
the apartment [that the maid cleaned] 20%

 German: das Dienstmadchen, [das die Wohnung reinigte]
die Wohnung, [die das Dienstmadchen reinigte]
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Why is tossed/thrown interesting?

e As with classic garden-paths, part-of-speech ambiguity leads

to misinterpretation N
. th ndwich.. .tripped NP VP
The woman e sandwic pp P Py
. Det N V
participle?

the  woman  brought

* But now context “should” rule out the garden path:

e The coach smiled at the player S
/\
o NP VP
patticiple: A~ o —
Det N Vv PP
[ | I L
the coach smiled Prep S
1 ——
at NP VP
N N
Det N Vv

I 1 I
the player tossed

* A challenge for rational models: failure to condition on
relevant context
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_ Background assumption: cognitive agent is optimized via
Revise : : .
somehow €Volution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
Formalize model of the environment adapted to

Make minimal assumptions re: computational limitations
Derive predicted optimal behavior given 1—3
Compare predictions with empirical data \
If necessary, iterate 1—5

2 e

Failures!

Our case study: revise #2, the model of the
environment to which the cognitive agent is adapted

(Anderson, 1990, 1991) 58
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Uncertain input in language comprehension

* Previous state of the art models for ambiguity resolution =
probabilistic incremental parsing
e Simplifying assumption:
e Input is clean and perfectly-formed
 No uncertainty about input is admitted
* |ntuitively seems patently wrong...
 We sometimes things
 We can also
e |Leads to two questions:

1. What might a model of sentence comprehension under
uncertain input look like?
2. What interesting consequences might such a model have?
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Noisy-channel language comprehension

o Standard probabilistic language comprehension
P(T|words) « P(words | T)P(T)

* Revision: probabilistic language comprehension where
the input is subject to noise and imperfect memory

P(T |input) « P(input | T)P(T)
= Z P(input|w, T)P(w, T)
w \

Ranges over possible
word sequences

Levy (2008, EMNLP); Futrell & Levy (2017, EACL)
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Incremental inference under uncertain input

e Near-neighbors make the “incorrect” analysis “correct”:

(and?) |
(that?) (and?) (that?)
(who?) (as?) (who?)

The coach smiled at the player tossed the frisbee

e Hypothesis: the boggle at “tossed” involves what the
comprehender wonders whether she might have seen
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The core of the intuition

e Grammar & input come together to determine two possible
“paths” through the partial sentence:

...the player...
(likely)
the coach smiled...
[
(unlikely)
...the player...
. Is more likely to happen along the bottom path
e This creates a large shift in belief in the condition
. IS very unlikely to happen along the bottom path

o As a result, there is no corresponding shift in belief
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e Prediction: interaction between preposition & part-of-
speech ambiguity in eye movements upon encountering
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a noisy input context C and next encountered word wi:

Pw,|C)= D, Pw;lw )P _i_y]C)

Wi -1

Cost(w,| C) = log

P(w;| C)

e Comparison with humans: is the ungrammatical version
of the sentence costlier?

COST(The apartment that the maid who the cleaning service
sent over was well-decorated. ) <
COST(The apartment that the maid who the cleaning service

sent over cleaned was well-decorated.)

?
(Futrell & Levy, 2017) '
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Application to structural forgetting

* Noisy channel + surprisal = noisy-context surprisal: for
a noisy input context C and next encountered word wi:

Pw,|C)= D, Pw;lw )P _i_y]C)

Wi -1

Cost(w,| C) = log

P(w;| C)

e Comparison with humans: is the ungrammatical version
of the sentence costlier?

COST(NOUN THAT NOUN THAT NOUN VERB VERB) <
COST(NOUN THAT NOUN THAT NOUN VERB VERB VERB)

(Futrell & Levy, 2017) 65



Application to structural forgetting

* Noisy channel + surprisal = noisy-context surprisal: for
a noisy input context C and next encountered word wi:

Pw,|C)= D, Pw;lw )P _i_y]C)

Wi -1

Cost(w,| C) = log

P(w;| C)

e Comparison with humans: is the ungrammatical version
of the sentence costlier?

CoST(2 VERBS) < COST(3 VERBS)

(Futrell & Levy, 2017) 65



Noisy-Context Surprisal Account of Structural Forgetting

e This turns out to work for toy grammars of English and German!

Rule Probability

S -> NP VERB

NP -> noun

NP -> noun RC

NP -> woun PP

PP -> prep NP

RC -> THAT vERB NP

RC -> taatT NP VERB

1

1-m Generates sequences like:

NOUN VERB
mr

NOUN PREP NOUN VERB
m(1-r)

NOUN THAT VERB NOUN
1

NOUN THAT NOUN VERB
S

NOUN THAT NOUN THAT
1-s

English: s=0.8 (Roland et al., 2007)
German s=0.0 (obligatorily verb-final)

VERB

VERB

NOUN...

66



(Ungrammatical — Grammatical) surprisal (bits)

N
1

—
[}

o
1

|
—
1

Model behavior

Engllish Ger;nan

Futrell & Levy (2017)

3-verb (grammatical)
version preferred

A

v

2-verb (ungrammatical)
version preferred
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Human reading
time differences

1000 -

500 -

(Ungrammatical — Grammatical) RT (ms)
o

-500 -

English German

Vasishth et al. (2010)



Summary & open questions

NLP and cognitive science offer each other a great deal

NLP—cognitive science: formal theory-building for
understanding human language processing

Cognitive science—NLP: desiderata for human-like
language processing systems
Experimental methods can probe human cognitive state
during language processing in remarkable detall
Principles of rational analysis provide us guidance in
theory building
Scientific progress good, but many open questions:
 How to fully characterize memory constraints in language?
e Key principles of human conversational interaction?
* Neural implementation of linguistic computations?

These are great opportunities for everyone herelll s
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Goals of Part Il

* [wo sections:
e Cognitive Evaluation:

* Applying methods from psycholinguistics and
cognitive science to analyze neural networks

* Characterizing complex human behavior around
language as a target for NLP systems

e Language Evolution and Emergence
* A recently-emerging exciting problem in NLP

» Some highlights from 20 years of research from the
field of Language Evolution about under what
circumstances language-like codes emerge In
agent-based models




Cognitive Evaluation



Psycholinguistic Assessment

Battery of behavioral tests

Conclusions about...
form of linguistic knowledge,
data structures used in online processing,
sources of difficulty in production & comprehension
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Fig. 2. Reading-time results as a function of region and condition for Experiment 1.

Onset of the relative clause (first four words) is boxed.

Levy et al. (2012)



Psycholinguistic Assessment

Battery of behavioral tests

Conclusions about...
form of linguistic knowledge,
data structures used in online processing,
sources of difficulty in production & comprehension



Psycholinguistic Assessment

Battery of behavioral tests

Conclusions about...
form of linguistic knowledge,
data structures used in online processing,
sources of difficulty in production & comprehension



Probing NN Behavior

(a) **The keys to the cabinet is on the table”

(b) “The keys to the cabinet are on the table”

<
oO—@< N
e
Jode iy

- WA
S

x x x x
- w N —

(@) is SURPRISING! (b) is UNSURPRISING

Elman (1991, 1993); Linzen et al. (2016)



Probing NN Behavior
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Phenomenon Do NN Language Models Learn It?

Subject—Verb Agreement J
(Linzen et al., 2016; Gulordava et al., 2018)

Garden Path Effects J J J

(van Schijndel & Linzen, 2018a,b; Futrell et al., 2018, 2019)

Filler-Gap Dependencies J J

(Chowdhury & Zamparelli, 2018; McCoy et al, 2018; Wilcox et al., 2018, 2019)

Island Constraints J (some)
(Chowdhury & Zamparelli, 2018; Wilcox et al., 2018)

NPI Licensing X X

(Marvin & Linzen, 2018; Futrell et al., 2018)

Anaphor Agreement X X

(Marvin & Linzen, 2018; Futrell et al., 2018)



What syntactic structures are easy vs.
hard for NN language models?

e They find this contrast easy
(Filler-Gap Dependencies: Wilcox et al., 2018, 2019).

® | know what the lion standing in the Serengeti devoured _ at sunrise.

® */ know what the lion standing in the Serengeti devoured a gazelle at
sunrise.

e They find this contrast hard
(Reflexive Anaphora: Marvin & Linzen, 2018; Futrell et al., 2018)

® T[he king standing next to the queen saw himself

® *The king standing next to the queen saw herself

They don’t generalize in a clear way across constructions that humans
find similar.



Targeted Evaluation Datasets

e Marvin & Linzen (2018)
e Used in e.g. Shen et al. (2019) [Ordered Neurons]

ON-LSTM LSTM

Short-Term Dependency
SUBJECT-VERB AGREEMENT:

Simple 0.99 1.00
In a sentential complement 0.95 0.98
Short VP coordination 0.89 0.92
In an object relative clause 0.84 0.88
In an object relative (no that) 0.78 0.81
REFLEXIVE ANAPHORA!:

Simple 0.89 0.82
In a sentential complement 0.86 0.80
NEGATIVE POLARITY ITEMS:

Simple (grammatical vs. intrusive) 0.18 1.00
Simple (intrusive vs. ungrammatical) 0.50 0.01
Simple (grammatical vs. ungrammatical) 0.07 0.63

Long-Term Dependency

SUBJECT-VERB AGREEMENT:

Long VP coordination 0.74 0.74
Across a prepositional phrase 0.67 0.68
Across a subject relative clause 0.66 0.60
Across an object relative clause 0.57 0.52
Across an object relative (no that) 0.54 0.51
REFLEXIVE ANAPHORA:

Across a relative clause 0.57 0.58

NEGATIVE POLARITY ITEMS:

Across a relative clause (grammatical vs. intrusive) 0.59 0.95
Across a relative clause (intrusive vs. ungrammatical) 0.20 0.00
Across a relative clause (grammatical vs. ungrammatical) 0.11 0.04




Probing Classifiers

e Alain & Bengio (2016); Belinkov et al. (2018); Hupkes,
Veldhoen & Zuidema (2018)

(ii) Feat generation with trained model
() NMT model training §=*7""[ ™" 0 " "o s s e ottety (i) Task classifier.
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Similar to neuroscience methods: Wallis (2018)



Other Methods of Peering In

e Hewitt & Manning (2019): Structural probe: Does there
exist a linear transformation of the contextual word
embedding space such that the distances reflect

syntactic parse trees?

out
store '
the 7

/ food




Sequence (to Sequence) Models

* Do generic sequence (to sequence) models show human-
like generalization?

jump = JUMP
jump left = LTURN JUMP
jump around right = RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice = LTURN LTURN
jump thrice = JUMP JUMP JUMP
jump opposite left and walk thrice = LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left = LTURN WALK LTURN WALK LTURN WALK LTURN WALK
LTURN LTURN JUMP
JUMP JUMP WALK <EOS>
— — — —> — — — —_—
jump twice and walk <EOS> <SOS> JUMP JUMP WALK
run => RUN

Lake & Baroni (2018)



Sequence (to Sequence) Models
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Figure 5. Zero-shot generalization after adding the primitive “jump”
and some compositional “jump” commands. The model that per-
formed best in generalizing from primitive “jump” only was re-
trained with different numbers of composed “jump” commands
(x-axis) in the training set, and generalization was measured on
new composed “jump” commands (y-axis). Each bar shows the
mean over 5 runs with varying training commands along with the
corresponding +1 SEM.

Lake & Baroni (2018)



Embedding Spaces

e Standard modern approach in NLP is to embed words and sentences
INto a metric space.

e Are human intuitions about word similarity well-modeled by a (Euclidean)
metric space?



Word Similarity

vanish disappear
behave obey
belief 1mpression
muscle bone
modest flexible
hole agreement

e Other human word similarity datasets:

 Free-association Nelson Norms (Nelson et al., 1998)
e Small World of Words (smallworldofwords.orq)

SimLex


http://smallworldofwords.org

Embedding Spaces

e Standard modern approach in NLP is to embed words and sentences
INto a metric space.

e Are human intuitions about word similarity well-modeled by a (Euclidean)
metric space?

Minimality :
é(a,b) > é(a,a) = 0.
Symmetry:
é(a,b) = é(b,a).
The triangle inequality:
é(a"b) + 6(b,C) 2 6(8,C).

® keg, beer

® VsS. beer, keg
® cobra, snhake

® VS. snake, cobra
® meow, cat

® Vs. cat, meow

Tversky (1977); Griffiths, Steyvers & Tenenbaum (2007)



Semantic Networks

* Human word similarity judgments are best modeled using
semantic networks (Steyvers & Tenenbaum, 2005).
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Semantic Networks

 Degree distributions in human-derived semantic
networks follow a power law:

(a) UNDIRECTED (b) DIRECTED
, ASSOCIATIVE NETWORK ASSOCIATIVE NETWORK
107 e 100 grrrrm e
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Steyvers & Tenenbaum (2005)



Semantic Networks

* Degree distributions in semantic networks extracted from
distributional embeddings follow an exponential law:

Cosine Similarity
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Fig. 8. The degree distributions for networks based on thresholded LSA spaces. For the e-method, degree distribu-
tions of undirected networks are shown. For the k-nn method, the in-degree distributions are shown.

Steyvers & Tenenbaum (2005)



Embedding Spaces

e Distributionally-derived metric spaces do not capture human
intuitions about word similarity, nor human free associations

between words.

* Human data violates symmetry and the triangle
inequality, but follows minimality.

* Human data implies a power-law degree distribution in
semantic networks, but distributional methods give an
exponential degree distribution.

® Premetric spaces (such as defined by KL divergence in
information geometry) may be compatible with the human
data.

® There is a rich modeling and experimental literature to draw
from to define these spaces.

Tversky (1977); Steyvers & Tenenbaum (2005); Griffiths, Steyvers & Tenenbaum (2007)



Theory of Mind

JANNE
TRANSFERS
SALLY'S
IMARBLE

T0 BOX

where will sally
look for her
marble?

Baron-Cohen et al. (1985)



Theory of Mind as a Question
Answering Challenge

Second-order False Belief

Anne entered the kitchen.
Sally entered the kitchen.
The milk is in the fridge.
Mary went to the bathroom. AT
Sally exited the kitchen.
John moved to the hallway. .
Anne moved the milk to the pantry.
Mary travelled to the office. ! ted the kitch
Where is Mary? A: office ¢ exitec the Hdichen.
S Sally entered the kitchen.

bAbi (Weston et al., 2006)

Memory Where was the milk at the beginning?

Reality Where is the milk really?

First-order Where will Sally look for the milk?

Second-order | Where does Anne think that Sally searches for the milk?

Nematzadeh et al. (2018)
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Memory Reality First Order Belief Second Order Belief
1.0, . == —_ 1.0, . 1.0, v
m - m CJ
- .8 0.4 L4
_ '
1.0 1.0 ™ 1.0
———
).4 0.4 L) 1.4
) 0.2 )
0.0 U4 JAi
s S50rpg o s S50rp o s S50rp o s S0rg

Nematzadeh et al. (2018)



Cognitive Evaluation

 Behavioral work in cognitive science can feed into NLP in two
ways:

 Providing careful analytical techniques for evaluating black-
box models.

e Reveals structural representations and inductive biases
In neural models.

* Providing challenging datasets and phenomena.
e Compositionality & systematicity
e Non-metric nature of human similarity judgments

 Question answering involving Theory of Mind
e Many more!



Language Evolution
and Emergence



Language Evolution and Emergence

* |f you have something like deep reinforcement learning
agents trying to cooperate to solve a task, when will they
evolve a language-like code for communication?

e Havrylov & Titov (2017); Lazaridou et al. (2017, 2018);
Mordatch & Abbeel (2017); Chaabouni et al. (2019); Lee
et al. (2018)

* A potential new way to model what language is.

* |’ll present some high-level takeaways from over 20 years
of research in agent-based models of Evolution of
Language.



Emergence of Symbols

e Simplest setting:
David Lewis’s Signaling Game

o/ o/ e

Lewis (1969). Convention: A Philosophical Study




Emergence of Symbols

* Three requirements for emergence of learned signalling:
e Availability of referential-interpretative information
 Bias against ambiguity

e Information loss

Referential

" Information l
SIGNAL > .
@ Hearer
Interpretive
Information [*

Spike, Stadler, Kirby & Smith (2017)



From Symbols to Linguistic Structure

* Two hallmarks of human language.:
e Combinatoriality
e Compositionality
e Combinatoriality:
* A small set of meaningless units (phonemes/letters)
combine together to form a large set of meaningful units
(morphemes/words) according to an arbitrary function.

/K/ + /el + /t/ = /keet/, “cat”



From Symbols to Linguistic Structure

* Two hallmarks of human language:

e Combinatoriality

e Compositionality

e Compositionality:

* A large set of meaningful units (morphemes/words)
combine together to form an infinite set of meaningful
sentences (Montague, 1970) according to a simple
function.

The + cat + meows

Meaning = f(f(the, cat), meows)

Duality of patterning



Emergence of Combinatoriality

e Nowak & Krakauer (1999)

* Imagine you are
communicating about K
objects in a Lewis signaling a 201
game.

* Imagine it is hard to perceive
the difference between
signals. 20 40 60 80 100

 Then it is better for a signal b 20. 6 7 8 9
to consist of multiple
discriminable parts (for
redundancy), rather than
each signal consisting of one 20 40 60 80 100
atomic part.

b aed
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Verhoef (2012); Tria (2012); Del Giudice (2012); Hofer, Tenenbaum & Levy (2019)



Emergence of Combinatoriality

e Related: Chaabouni et al.
(2019) find that emergent
languages Iin deep
reinforcement learning
agents favor long
utterances due to
discriminability.

Payoff

Payoff <
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Defining Compositionality

Compositionality In intuitive terms, the representations computed by f are compositional if each
f(x) is determined by the structure of D(x). Most discussions of compositionality, following
Montague (1970), make this precise by defining a composition operation 6, * 6, — 6 in the space
of representations. Then the model f is compositional if it is a homomorphism from inputs to
representations: we require that for any = with D(x) = (D(z,), D(xp)),

f(@) = f(2a) * f(@s) - (1)

Montague (1970); Andreas (2019)



Emergence of Compositionality
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Current Opinion in Neurobiology

Iterated language learning experiments

Compositionality emerges from a transmission bottleneck — which

iImplements a simplicity constraint.

e Compositionality = Simplicity + Communicativity

Kirby, Cornish & Smith (2008)




Simple Compositionality in
Agent-Based Modeling
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* An implementation of
compositionality = simplicity + communicativity

Abbeel & Mordatch (2017)



High-level Generalizations about Human
Language

e Modeling targets for language emergence
experiments beyond combinatoriality & compositionality.
* The set of phonemes used in any language is much

smaller than the set of all pronounceable phonemes
used in all languages.

e The set of phonemes in a language has a lot of
repeated substructure in terms of phonetic features.

e The set of phonemes in a language has a pressure to
be maximally acoustically distinct.



High-level Generalizations about Human
Language

Languages usually have on the order of 10"1 phonemes and on the

order of 10°4 morphemes: relatively invariant sequences of

phonemes which correspond to atomic components of the meaning

of an utterance.

* A “hierarachy problem” for natural language.

* In contrast, animal communication systems usually have 10/
symbols with no internal structure.

Morphemes vary in length; frequent/more predictable morphemes are

shorter (Zipf, 1949; Piantadosi et al., 2011)

e Compare Chaabouni et al. (2019)

Morphemes contain a great deal of repeated substructure in their

seqguences of phonemes (phonotactics).

Phonotactics is formally characterizable as k-tier-based strictly

local languages with k=~2 (Heinz, 2011)



High-level Generalizations about Human
Language

Utterances consist of sequences of multiple morphemes.
Utterances vary in length.

The overall meaning of an utterance is compositional: it is a simple
function of the meanings of the morphemes and their order.

There are an unbounded number of possible utterances.
Utterances have tree-like hierarchical structure

In these structures, one word composes typically with one other
word in the computation of the meaning of the utterance (defining
the dependency tree). This property is called endocentricity
(Jakobson, 1961).

The set of possible utterances is characterizable as a Multiple
Context Free Language (Seki et al., 1991), with block degree ~2
(Weir, 1988; Kuhlmann, 2013).



Language Evolution

There is a vast literature! (see evolang.org)

e Evolution of Language Conference every 2 years

Requirements for learned signaling: referential feedback,
ambiguity avoidance, information loss

Requirements for combinatoriality: noise in communication

Requirements for compositionality. simplicity +
communicativity

Natural language provides a number of modeling targets!


http://evolang.org

Wrapping Up



Wrapping Up

e Cognitive modeling provides inspiration, challenges,
and analytical tools for NLP.

* Language is a human object—created by humans, for
humans.

e The human cognitive side is especially important!

* A vast unexplored territory in characterizing human

language learning, human language processing, and
emergence of language

* The bottleneck in the field is a lack of computationally-
skilled researchers!



Thanks all!



