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Normalization
is the mapping of historical (spelling) 

variants to a canonical (modern) form.

All systems are token-level approaches with supervised learning.

The Systems

Results

 SMT is best on average

 Norma is a good option 
with little training data

  (NMT might need more data?)

 Stemming 
can provide more 
nuanced view of 
datasets and 
prediction errors

 Best strategy is 
lookup for IV tokens 
and trained model 
(e.g. SMT) only for 
OOV tokens

Normalization accuracy on test data (* = difference not statistically significant)

The Data

Datasets, code, instructions, etc.:
  github.com/coastalcph/histnorm

● Historical corpora from eight languages
● Texts written between the 1300s and 1899

      Norma (Bollmann, 2012)

● Implements wordlist lookup

● Has a rule-based component

● Has a component based on 
(weighted) Levenshtein distance 
to lexicon entries

þ  th / #_e⟶

      Statistical MT

● Character-level “translation” of tokens

● Uses Moses toolkit with GIZA++
● Implementation and settings provided 

by cSMTiser toolkit (Ljubešić et al., 2016)

Input: <w> þ e r </w>
Output: <w> t h e i r </w>

      Neural MT (seq2seq)

● Character-level encoder-decoder models
● NMT-1 (Bollmann, 2018):

– LSTMs with dimensionality 300
– Implemented with XNMT

● NMT-2 (Tang et al., 2018):

– RNNs with dimensionality 1024
– Implemented with Marian
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