# Iterative Search for Weakly Supervised Semantic Parsing











Ed Hovy

Pradeep Dasigi

Matt Gardner

Shikhar Murty

Luke Zettlemoyer









#### This talk in one slide

- Training semantic parsing with denotation-only supervision is challenging because of **spuriousness**: incorrect logical forms can yield correct denotations.
- Two solutions:
  - Iterative training: Online search with initialization  $\Rightarrow$  MML over offline search output
  - Coverage during online search
- State-of-the-art single model performances:
  - WikiTableQuestions with comparable supervision
  - NLVR semantic parsing with significantly less supervision



# Semantic Parsing for Question Answering

| Athlete             | Nation               | Olympics  | Medals |  |
|---------------------|----------------------|-----------|--------|--|
| Gillis<br>Grafström | Sweden (SWE)         | 1920–1932 | 4      |  |
| Kim<br>Soo-Nyung    | South Korea<br>(KOR) | 1988-2000 | 6      |  |
| Evgeni<br>Plushenko | Russia (RUS)         | 2002–2014 | 4      |  |
| Kim Yu-na           | South Korea<br>(KOR) | 2010-2014 | 2      |  |
| Patrick Chan        | Canada (CAN)         | 2014      | 2      |  |

**Question**: Which athlete was from South Korea after the year 2010?

Answer: Kim Yu-Na

#### **Reasoning**:

- 1) Get rows where Nation is South Korea
- 2) Filter rows where value in *Olympics > 2010*.
- 3) Get value from *Athlete* column

#### Program:

```
(select_string
  (filter
      (filter, all_rows olympics 2010)
      south_korea)
  athlete)
```



### Weakly Supervised Semantic Parsing

 $\mathbf{x_i}$ : Which athlete was from South Korea after 2010?

y; (select\_string (filter\_ (filter\_ all\_rows olympics 2010) south korea) athlete)

 $\mathbf{z}_{i^{\bullet}}$  Kim Yu-Na

MethleteNationOlympicsMedalsWith Yu-naSouth Korea2010–20142Tenley<br/>AlbrightUnited<br/>States1952-19562

Train on 
$$D=\{x_i,w_i,z_i\}_{i=1}^N$$

Test: Given  $x_{N+k}, w_{N+k}$  find  $y_{N+k}$  such that  $[\![y_{N+k}]\!]^{w_{N+k}} = z_{N+k}$ 



## Challenge: Spurious logical forms

| Athlete             | Nation               | Olympics  | Medals |  |
|---------------------|----------------------|-----------|--------|--|
| Gillis<br>Grafström | Sweden (SWE)         | 1920–1932 | 4      |  |
| Kim<br>Soo-Nyung    | South Korea<br>(KOR) | 1988-2000 | 6      |  |
| Evgeni<br>Plushenko | Russia (RUS)         | 2002–2014 | 4      |  |
| Kim Yu-na           | South Korea<br>(KOR) | 2010-2014 | 2      |  |
| Patrick Chan        | Canada (CAN)         | 2014      | 2      |  |

Which athletes are from South Korea after 2010? Kim Yu-Na

Logical forms that lead to answer:

Athlete from South Korea after 2010

Athlete from South Korea with 2 medals

First athlete in the table with 2 medals

Athlete in row 4

# Challenge: Spurious logical forms

There is exactly one square touching the bottom of a box True



Due to binary denotations, 50% of logical forms give correct answer!

lead to answer:

touching bottom of boxes

Count of yellow squares is 1

There exists a yellow triangle

There exists an object

Cornell Natural Language Visual Reasoning, Suhr et al., 2017

### Training Objectives

#### Maximum Marginal Likelihood

#### **Reward/Cost** -based approaches

search to get stuck in the exponential search

7. 2018).

Eg : Li Proposal: Alternate between the two objectives while gradually Krishr increasing the search space! Maxin set of N $\min_{\theta} \sum \mathbb{E}_{p(y_i|x_i;\theta)} \mathcal{C}(x_i, y_i, w_i, d_i)$  $p(y_i|x_i; heta)$ max θ  $x_i, w_i, z_i \in D \ y_i \in Y | \llbracket y_i \rrbracket^{w_i} = z_i$ ... but random initialization can cause the

space

... but we need a good set of approximate logical forms



Step 0: Get seed set of logical forms till depth **k** 





 $D = \{x_i, w_i, z_i\}_{i=1}^N$ Limited depth exhaustive search Max logical form  $D^{0} = \{x_{j}, Y_{j}\}_{j=1}^{M} \\ \forall_{y_{j} \in Y_{j}} \mathcal{C}(x_{j}, y_{j}, w_{j}, d_{j}) = 0$ depth = k LSTM LSTM LSTM LSTM Maximum Marginal Likelihood

Step 0: Get seed set of logical forms till depth **k** 

**Step 1**: Train model using MML on seed set





Step 0: Get seed set of logical forms till depth **k** 

**Step 1**: Train model using MML on seed set

Step 2: Train using MBR on all data
till a greater depth k + s





Step 0: Get seed set of logical forms till depth **k** 

**Step 1**: Train model using MML on seed set

Step 2: Train using MBR on all data
till a greater depth k + s

**Step 3**: Replace offline search with trained MBR and update seed set







### Spuriousness Solution 2: Coverage guidance

There is exactly one square touching the bottom of a box. (count\_equals (square (touch\_bottom all\_objects)) 1)

- **Insight:** There is a significant amount of trivial overlap
- Solution: Use overlap as a measure guide search



| Spuri                                | Example                                                                                                                                                                            |                                                               | ce                                                                           |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|
| _                                    | Sentence: There is exactly one square touching the bottom of<br>Triggered target symbols: {count_equals, square, 1,<br>touch_bottom}<br>Coverage costs of candidate logical forms: | top<br>→ bottom<br>→ above<br>→ below<br>→ square<br>→ circle |                                                                              |
| 1<br>square<br>touch_b               | Logical form                                                                                                                                                                       | Coverage                                                      | $\begin{array}{c} le \rightarrow triangle \\ \rightarrow yellow \end{array}$ |
| Coverage cos<br>symbols that<br>form | <pre>(count_equals (square (touch_bottom   all_objects)) 1)</pre>                                                                                                                  | 0                                                             | → black<br>blue<br>big<br>→ small<br>→ medium                                |
|                                      | (count_equals (square all_objects) 1)                                                                                                                                              | 1                                                             |                                                                              |
|                                      | (object_exists all_objects)                                                                                                                                                        | 4                                                             |                                                                              |



# Training with Coverage Guidance

• Augment the reward-based objective:

$$\min_{\theta} \sum_{I=1}^{N} \mathbb{E}_{p(y_i|x_i;\theta)} \mathcal{C}(x_i, y_i, w_i, d_i)$$

now  $\mathcal{C}$  is defined a linear combination of **coverage** and **denotation** costs

$$\mathcal{C}(x_i, y_i, w_i, d_i) = \lambda \mathcal{S}(y_i, x_i) + (1 - \lambda) \mathcal{T}(y_i, w_i, d_i)$$



#### Results of training with iterative search on NLVR\*



\* using structured representations

Iterations



Results of training with iterative search on WikiTableQuestions



Iterations



#### Results of using coverage guided training on NLVR\*



when model initialized from an MML model trained on a seed set of offline searched paths



when trained from scratch

AZ

### Comparison with previous approaches on NLVR\*



- MaxEnt, BiAttPonter are not semantic parsers
- Abs. supervision + Rerank uses manually labeled abstractions of utterance - logical form pairs to get training data for a supervised system, and reranking
- Our work outperforms Goldman et al., 2018 with fewer resources



\* using structured representations

#### Comparison with previous approaches on WikiTableQuestions



Non-neural models

Reinforcement Learning models

Non-RL Neural Models



#### Summary

- Spuriousness is a challenge in training semantic parsers with weak supervision
- Two solutions:
  - Iterative training: Online search with initialization  $\Rightarrow$  MML over offline search output
  - Coverage during online search
- SOTA single model performances:
  - WikiTableQuestions: **44.3%**
  - NLVR semantic parsing: 82.9%

Thank you! Questions?

