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1 Appendix

1.1 Proof of Theorem 1

We begin by restating the likelihood of a multi-
modal segment s under our model:

P[s|ms] ey
= P[w|ms ] P[v|ms]*VP[a|ms]*® (2)
= [ Plwms]®™ [ ] P[vjms]™ ] Plalms]*®

3)

We define the objective function by the maxi-
mum likelihood estimator of the multimodal utter-
ance embedding and the parameters. The estimator
is obtained by solving the unknown variables that
maximizes the log-likelihood of the observed mul-
timodal utterance (i.e., s):

L(ms, W, b;s) =log P[s|ms; W, b] )

= > logPlw|ms]™ + > log P[v|ms]™
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+ Y logPla|ms]™® 5)
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with W and b denoting all linear transformation
parameters. Our goal is to solve for the opti-
mal embedding my = arg max,,, L(ms, W, b;s).
We will begin by simplifying each of the
terms: log (P[w|ms])™™ ,log (P[v|ms])®", and
log (P[a|ms])™®.

For the language features, we follow the ap-
proach in (Arora et al., 2017). We define:

fw(ms) (6)
= log P[w]ms]™ 0
= (i log P[w|ms] )
= o log ap(w) + (1 — a)exp((zw—’mS» 9)

ms

By taking the gradient V,,,_ fi,(ms) and making a
Taylor approximation,

(10)
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Jw(ms) ~ f,(0) + Vmsfw(O)Tms
_ aw(l-a)/(aZ)
p(w) + (1-a)/(aZ)

(w, mg)

For the visual features, we can decompose the like-
lihood P[v|ms] as a product of the likelihoods in
each coordinate ]'[Li‘l P[v(i)|ms] since we assume
a diagonal covariance matrix. Let v(4) € R denote
the ith visual feature and W/ (i) € RI™s! be the i-th
column of W/.

po (1) = W (i)ms + by, (i) (12)
ou(i) = exp (W, (i)ms + b (7)) (13)
v(i)|ms ~ N (p (i), 07 (1)) (14)
O E S RCOSTAG)4
Blu(0)ms] - = exp -

(15)

Define f,;)(ms) as follows:
fo(iy(ms) (16)
=log P[v(i)|ms]™ (17)
= ay log P[v(7)|ms] (18)

= —ay log (\/%O'U(i)) —Qy —(U(Z) — i (i)®

207(i)
(19)
~ ~a log (V2m exp (W7 (i)m + 4(1)))
Y (v(i) = Wi (i)m - bl (i))? (20)

M 2exp (W7 (i)ms + bg(i))z
= —ay log V21 — (W7 (i)ms + b3 (7))
(v(i) = W (i)m — bl (i))*

_aVQeXp (2We (i)ms + 209 (1)) @D




The gradient V,,, fy,(;)(ms) is as follows

fv(ms) = Z fv(z)(ms)
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(33)

Vim futiy (s) (22) = e+ (W (v = b)), me)
= —av Wi (i) —av —— ( yi [2(v(3) - po(3))] + (W;”(v -by)® (v- bﬁ)wé”,ms)
v (23) (34)
[(v(2) = po (D)W () + (v(i) = p(2))* W ()]
= Qv o(i)? fa(ms) = 37 fa(i)(ms) (35)
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ov (i) where ® denotes Hadamard (element-wise) product
and the weights v’s are given as follows:
By Taylor expansion, we have that
Fuy () 6) p(w) +(1-a)/(aZ)
. Qi
~ fv(i) (0) + vmsfv(i)(O)Tms (27) 1/17()1) = diag W) (38)
= —ay log (x/gﬂexp (b"(z’))) o (@) b (0)* o ’
v v ¥ 2exp (207 (i) ) = diag W - av) (39)
exp (209
constant with respect to mg o
. , 1) _ g; a
v(i) = bl (1) _ Yy’ = diag —) (40)
LU e exp (2b7
exp @ (i) (1 o
. . (2) T a
(v(i) - bl (4))* , Vg’ = diag ——————a% (4D
(PR ) (W (i), ms exp (2b
o (S - P
(28)  Observe that W7 (v — b)) is a composition of a
v(i) - bl (7) ' shift —bl, and a linear transformation W of the vi-
=Cc+ QVW (W (@), ms) sual features into the multimodal embedding space.
(v(i) _7;)”(2,))2 Note that E[v|ms] = bl,. In other words, this shifts
Qy (—;’ - 1) (W7 (i), ms) the visual features towards 0 in expectation before
exp (267 (1)) 29) transforming them into the multimodal embedding

By our symmetric paramterization of the acous-
tic features, we have that:

faiy(ms) (30)
NC+ o —a(z’)—bg(i) 1), m
Y @)
@@ -G ) s
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Rewriting this in matrix form, we obtain that

fw(ms) =C+'9Z)w<w7ms> (32)

space. Our choice of a Gaussian likelihood for the
visual and acoustic features introduces a squared
term W7 (v - bly) ® (v — b)) to account for the
{5 distance present in the Gaussian pdf. Secondly,
regarding the weights 1’s, note that: 1) the weights
for a modality are proportional to the global hyper-
parameters « assigned to that modality, and 2) the
weights 1), are inversely proportional to p(w) (rare
words carry more weight). The weights 1,,’s and
1,’s scales each feature dimension inversely by
their magnitude.

Finally, we know that our objective function (4)
decomposes as

L(ms, W ,b;s)
= Z Jw(ms) + Z fo(ms) + Z fa(ms) (42)
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We now use the fact that max,,2_; constant +

(z,9) = g/|gl. If we assume that m lies on the
unit sphere, the maximum likelihood estimate for

mg 1S approximately:

*

mS
= X duw+ Y (WETE DM 4 W5y

+ 2 (WeTaWyM + wTa®y). (43)
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where we have rewritten the shifted (and squared)
visual and acoustic terms as

o) =y — bt (44)
7 = (v-b") @ (v-b) (45)
aM=a-b! (46)
0 = (a-b)® (a-bh) (47)

which concludes the proof.

1.2 Multimodal Features

Here we present extra details on feature extraction
for the language, visual and acoustic modalities.
Language: We used 300 dimensional GloVe word
embeddings trained on 840 billion tokens from the
Common Crawl] dataset (Pennington et al., 2014).
These word embeddings were used to embed a
sequence of individual words from video segment
transcripts into a sequence of word vectors that
represent spoken text.

Visual: The library Facet (iMotions, 2017) is used
to extract a set of visual features including facial ac-
tion units, facial landmarks, head pose, gaze track-
ing and HOG features (Zhu et al., 2006). These
visual features are extracted from the full video seg-
ment at 30Hz to form a sequence of facial gesture
measures throughout time.

Acoustic: The software COVAREP (Degottex
et al., 2014) is used to extract acoustic features
including 12 Mel-frequency cepstral coefficients,
pitch tracking and voiced/unvoiced segmenting fea-
tures (Drugman and Alwan, 2011), glottal source
parameters (Childers and Lee, 1991; Drugman
etal., 2012; Alku, 1992; Alku et al., 1997, 2002),
peak slope parameters and maxima dispersion quo-
tients (Kane and Gobl, 2013). These visual features
are extracted from the full audio clip of each seg-
ment at 100Hz to form a sequence that represent
variations in tone of voice over an audio segment.

1.3 Multimodal Alignment

We perform forced alignment using P2FA (Yuan
and Liberman, 2008) to obtain the exact utterance
time-stamp of each word. This allows us to align
the three modalities together. Since words are con-
sidered the basic units of language we use the
interval duration of each word utterance as one
time-step. We acquire the aligned video and au-
dio features by computing the expectation of their
modality feature values over the word utterance
time interval (Zadeh et al., 2018).
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