A Supplemental Material

In this section, we provide implementation details
for our models. The dataset we use has 2,493
training, 360 development, and 720 test examples.

A.1 Advice Sentence Generation

Our advice sentences are generated by filling in
appropriate regions/directions into varying sen-
tences. For example, given an advice sentence
placeholder, The target is in the , and a coor-
dinate in the lower left, we would generate the re-
strictive advice sentence: The target is in the lower
left. At test time, we use variations of this sen-
tence such as: The block’s region is the lower lefft,
to avoid memorization. We showed in Table 1 the
importance of our pre-trained models in enabling
sentence variability and advice understanding (M4
vs M5).

A.2 Pre-trained Model Details

All of our pre-trained models are trained on ran-
dom coordinates and advice sentences.

The model used to comprehend restrictive ad-
vice is trained as a binary prediction problem, and
must output a positive prediction if the random in-
put coordinate is in the region described by the in-
put advice sentence. This design allows the model
to understand the meaning of the advice sentence
by determining if the random coordinate follows
the sentence.

Our architecture takes as input an advice sen-
tence s = wi,ws,..., Wy, passes it through a
trained embedding layer of size 100, a LSTM of
size 256, and outputs the hidden state representa-
tions {h,, }. The last hidden state h,, is embedded
using a Fully Connected (FC) layer of size 100.
Each axis of a random input coordinate (x,y, z)
is also passed into the network and embedded us-
ing a FC layer of size 100. These 4 FC layers are
summed up and passed through a final FC layer
O of size 2, which is then followed by a softmax.
All FC layers use the RELU activation function.
We train this as a binary prediction problem us-
ing cross-entropy loss, the Adam optimizer, and a
learning rate of 0.001. Gradient clipping (Pascanu
et al., 2013) is used on the LSTM parameters to
avoid exploding gradients.

The model for corrective advice is identical to
the one for restrictive advice, except the final FC
layer O has size 3, and the model is trained to out-
put a coordinate that follows the advice. If it out-

puts an advice-following coordinate, the model re-
ceives 0 loss. Otherwise a mean square regression
loss is provided, where the ground truth is some
random coordinate that does follow the advice.

A.3 End-to-end Advice Model Details

The end-to-end model is trained and tested on the
training and test split from (Bisk et al., 2016).
We load and freeze the LSTM, embedding layer,
LSTM hidden state h,, and the FC layer follow-
ing it from the pre-trained model into the end-to-
end model. This last FC layer is passed through a
FC layer of size 256, which is then summed with
the LSTM hidden state of the original Bisk et al.
model. We are able to accurately generate and
feed-in the advice to the pre-trained portion of this
model (just like a human would), as we have ac-
cess to the true source/target coordinates from the
dataset. The rest of the architecture and training
procedure is identical to Bisk et al..

A.4 Model Advice Generation Details

For the model that self-generates the advice (Fig-
ure 3), we use a neural network model, passing the
instruction from the Bisk et al. dataset into an em-
bedding layer of size 256, followed by a LSTM
of size 256. We then embed the blocks-world grid
using a FC layer of size 20 (the maximum num-
ber of blocks there are), final FC layer of size 4
(when dividing the grid into 4 regions), and soft-
max with cross-entropy loss. We train using Adam
optimizer (Kingma and Ba, 2014) and a learning
rate of 0.0001. All FC layers use the Leaky RELU
activation function (Maas et al., 2013). We note
that if we change the final FC layer to size 3 and
train this model as a coordinate prediction prob-
lem, the performance is worse than Bisk et al..
This shows that the overall performance improve-
ment shown in Section 3.4 is due to considering
self-generated advice.

When using the model self-generated advice in
the end-to-end model, we use accurate advice at
training time (computed using the train split of
Bisk et al.), and the self-generated advice at test
time. The self-generated test advice is generated
by training the advice generation model on the
Bisk et al. dataset, and using the best performing
model (evaluated on the dev split) to generate ad-
vice for the test data. Thus, no human interaction
is needed.

When using retry advice, we also use accurate
advice at training time and self-generated advice



at test time. However, we generate two sets of
self-generated advice, one for the most confident
region prediction, and another for the next most
confident one (determined by the softmax scores
and explained in Section 3.3). If the general re-
gion of the coordinate prediction in the first iter-
ation of running the end-to-end model (with the
most confident self-generated advice) is incorrect,
the human operator will provide retry advice, and
we then feed in the second most confident advice
(using that for the final prediction).

Input-specific self-generated advice is gener-
ated in two iterations. In the first iteration, we run
the trained Bisk et al. model on the test split, and
then create an advice region (of the same size as
when we divided the board into four quadrants)
centered at the predicted coordinate (but not ex-
ceeding the boundary of the board). In the sec-
ond iteration, this advice is fed into the Bisk et al.
model just like Section 3.1. Thus, again, no human
interaction is needed.



