Simple Question Answering with Subgraph Ranking and Joint-Scoring

Wenbo Zhao¹ Tagyoung Chung² Anuj Goyal² Angeliki Metallinou² ¹Carnegie Mellon University ²Amazon Alexa Al

Overview

Task: *knowledge graph* based *simple question* answering (KBSQA) **Knowledge Graph:** multi-entity multi-relation directed graph containing fact triples (*subject, relation, object*)

Simple Question: can be answered by a single fact from knowledge graph **Example:** "Which Harry Potter series did Rufus Scrimgeour appear in?" v.s. (Rufus Scrimgeour, book.book-characters.appears-in-book, Harry Potter and the Deathly Hallows)

Our Method: subgraph ranking + joint scoring model + well-order loss **Result:** new state of the art on SimpleQuestions dataset

Motivation Challenges

(1) massive size of knowledge graph (billions of facts)

(2) variability of questions in natural language

Two-Step Solution

- (1) subgraph selection
- (2) fact selection

Conventional Approaches

) sequence labeling with BiLSTM-CRF + subgraph selection with n-grams

Proposed Methods

(1) A subgraph ranking method with combined literal and semantic score

$$score(s,m) = \tau |\sigma|(s,m) + (1-\tau) \log \mathbb{P}(s,m)$$

$$\mathbb{P}(s,m) = \mathbb{P}(s|m)\mathbb{P}(m)$$

$$= \mathbb{P}(w_1, \dots, w_N | \widetilde{w}_1, \dots, \widetilde{w}_M) \mathbb{P}(\widetilde{w}_1, \dots, \widetilde{w}_M)$$

$$= \prod_{i=1}^N \mathbb{P}(w_i | \widetilde{w}_1, \dots, \widetilde{w}_M) \mathbb{P}(\widetilde{w}_1, \dots, \widetilde{w}_M)$$

$$= \prod_{i=1}^N \left(\prod_{k=1}^M \mathbb{P}(w_i | \widetilde{w}_k)\right) \mathbb{P}(\widetilde{w}_1, \dots, \widetilde{w}_M)$$

$$= \prod_{i=1}^N \left(\prod_{k=1}^M \mathbb{P}(w_i | \widetilde{w}_k)\right) \prod_{j=1}^{M-1} \mathbb{P}(\widetilde{w}_{j+1} | \widetilde{w}_j) \mathbb{P}(\widetilde{w}_1)$$

(2) A low-complexity joint-scoring CNN model

(3) A well-order loss

$$\min_{q \in \mathcal{Q}, (s,r) \in \mathcal{S}_{q\downarrow}^{n} \times \mathcal{R}_{q\downarrow}^{n}} \left[|I^{+}| \sum_{j^{-}} h_{f}(m_{q}, s^{j^{-}}) - |I^{-}| \sum_{j^{+}} h_{q}(p_{q}, r^{j^{-}}) - |J^{-}| \sum$$

Features

P(s,m)ngth of longest common subsequence

Experiments

Dataset SimpleQuestions: 108,442 questions Train/Valid/Test: 75,910/10,845/21,687 Knowledge Graph

Results Table 1. Subgraph Selection Results

Rank Method	Top-N	Recall	Approach	Object (%)	Subject (%)	Relation (%)
	1	0.736	AMPCNN (Yin et al., 2016)	76.4		
	5	0.850				
Literal: $ \sigma $ + heuristics	10	0.874	BiLSTM (Petrochuk & Zettlemoyer, 2018)	83.57		
(Yin et al., 2016)	20	0.888				
	50	0.904	AMPCNN + Well-Order Loss	77.69		
	100	0.916				
Semantic: log P	1	0.482	Joint Model + Well-Order Loss	81.10	87.44	69.22
	10	0.753				
	20	0.854	Joint Model + Well-Order Loss + Top-50 Subgraph	85.44	91.47	76.98
	50	0.921				
	100	0.848	Joint Model + Well-Order Loss + Top-1 Subgraph	79.34		
Joint : $0.9 \sigma + 0.1 \log \mathbb{P}$	1	0.855			87.97	84.12
	5	0.904				
	10	0.920				
	20	0.927				
	50	0.945				
	100	0.928				

Table 3. Error Decomposition (%) (total 3,157 errors)

Incorrect Subject only

Incorrect Relation only

Incorrect Subject and Relation

Other

Conclusions

Freebase (FB2M): 2,150,604 entities/6,701 relations/14,180,937 facts

Table 2. Fact Selection Accuracy

0.928

8.67	
16.26	
34.50	
40.57	

(1) our ranking method improves subgraph selection (2) our joint-scoring model with well-order loss improves fact selection (3) incorrect subject or relation can still lead to correct answer