
A Finite-state transducers

A.1 Rational Relations
A relation is a set of pairs—in this paper, a subset
of ⌃⇤ ⇥ �⇤, so it relates strings over an “input”
alphabet ⌃ to strings over an “output” alphabet �.

A weighted relation is a function R that maps
any string pair (x,y) to a weight in R�0.

We say that the relation R is rational if R can
be defined by some weighted finite-state transducer
(FST) T . As formalized in Appendix A.3, this means
thatR(x,y) is the total weight of all accepting paths
in T that are labeled with (x,y) (which is 0 if there
are no such accepting paths). The weight of each
accepting path in T is given by the product of its
arc weights, which fall in R>0.

The set of pairs support(R) , {(x,y) :
R(x,y) > 0} is then said to be a regular rela-
tion because it is recognized by the unweighted FST
obtained by dropping the weights from T . In this
paper, we are interested in defining non-rational

weighting functions R with this same regular sup-
port set.

A.2 Finite-state transducers
We briefly review finite-state transducers
(FSTs). Formally, an FST is a tuple T0 =
(⌃,�, Q,A0, I, F ) where

• ⌃ is a finite input alphabet

• � is a finite output alphabet

• Q is a finite set of states

• A0 ✓ Q⇥Q⇥ (⌃ [ {✏})⇥ (� [ {✏}) is the
set of weighted arcs

• I ✓ Q is the set of initial states (conventionally
|I| = 1)

• F ✓ Q is the set of final states

Let a = a1 . . . aT (for T � 0) be an accepting path
in T0, that is, each ai = (qi�1, qi,�i, �i) 2 A0 and
q0 2 I, qT 2 F . We say that the input and output
strings of a are �1 · · ·�T and �1 · · · �T .

A.3 Real-valued weighted FSTs
Weighted FSTs (WFSTs) are defined very simi-
larly to FSTs. A WFST is formally defined as
a 6-tuple, just like an (unweighted) FST: T =
(⌃,�, Q,A, I, F ), with arcs carrying weights: A ✓
Q⇥Q⇥ (⌃[ {✏})⇥ (�[ {✏})⇥R. Compared to

FST arcs in Appendix A.2, a WFST arc each ai =
(qi�1, qi,�i, �i,i) 2 A has weight i. We also
define the weight of a to be w(a) , NT

i=1 i 2 R.
The weight of the entire WFST T is defined as

the total weight (under �) of all accepting paths:

T [ ] ,
M

a

w(a) 2 R (14)

More interestingly, the weight T [x,y] of a string
pair x 2 ⌃⇤

,y 2 �⇤ is given by similarly summing
w(a) over just the accepting paths a whose input
string is x and output string is y.

B Training Procedure Details

We use stochastic gradient descent (SGD) to train
G✓. For each example, we compute the gradient
using normalized importance sampling over an
ensemble of 512 particles (paths), the maximum
that we could compute in parallel. By using a
large ensemble, we reduce both the bias (from
normalized importance sampling) and the variance
of the gradient estimate; we found that smaller
ensembles did not work as well. Thus, we used only
one example per minibatch.

We train the ‘clamped’ proposal distribution
q�(a | x � T � y) di�erently from the ‘free’ ones
q�(a | x � T ) and q�(a | T � y). The clamped
distribution is trained alternately with G✓, as listed
in Algorithm 2. We evaluate on the development
dataset at the end of each epoch using the Reranking
External method described in §4.3. When the EM
accuracy stops improving, we fix the parameters of
G✓ and start training q�(a | x�T ) and q�(a | T �y)
on the inclusive KL divergence objective function,
using methods described in (Lin and Eisner, 2018).
We then initialize the free distributions’ RNNs using
those of the clamped distributions. We train the free
proposal distributions for 30 epochs, and evaluate
on the development dataset at the end of each epoch.
Results from the best epochs are reported in this
paper.

C Further Analyses

C.1 Does feeding alignments into the decoder
help?

In particular,we attribute our models’ outperforming
Neuralized IBM Model 1 to the fact that a complete
history of past alignments is remembered in the
RNN state. (Wu et al., 2018) noted that in charac-
ter transduction tasks, past alignment information
seemed to barely a�ect decoding decisions made



Input / Output Paths P̂ (a | x,y)

/mAôS/

marche

✏:m m:A a:ô r:S c:✏ h:✏ e:✏ 96.5%
✏:m m:A a:ô r:✏ ✏:S c:✏ h:✏ e:✏ 2.5%
✏:m m:A a:✏ ✏:ô r:S c:✏ h:✏ e:✏ 1.0%

/OnslOt/

onslaught

✏:O o:n n:✏ ✏:s s:l l:O a:✏ u:✏ g:✏ h:t t:✏ 76.3%
✏:O o:n n:s s:l l:O a:✏ u:✏ g:✏ h:t t:✏ 21.4%
✏:O o:n n:✏ ✏:s s:l l:O a:✏ u:✏ g:✏ h:✏ ✏:t t:✏ 1.5%

/wIlINh@m/

Willing-
ham

✏:w W:I i:l l:✏ l:✏ ✏:I i:N n:✏ g:✏ ✏:h h:@ a:✏ ✏:m m:✏ 40.1%
✏:w W:I i:l l:✏ l:I i:N n:✏ g:✏ ✏:h h:@ a:✏ ✏:m m:✏ 36.6%
✏:w W:I i:l l:✏ l:I i:N n:✏ g:h h:@ a:✏ ✏:m m:✏ 7.4%

/gezI/

ghezzi
✏:g g:✏ h:e e:z z:✏ I:z i:✏ 98.8%
✏:g g:e h:✏ e:z z:I z:✏ i:✏ 1.2%

Table 5: Most probable paths from x � T � y under the
approximate posterior distribution.

afterwards. However, we empirically find that there
is performance gain by explicitly modeling past
alignments. This also shows up in our preliminary
experiments with non-input-feeding seq2seq mod-
els, which resulted in about 1% of lowered accuracy
and about 0.1 longer edit distance.

C.2 Interpretability of learned NFST paths
The model is not required to learn transduction
rules that conform to our linguistic knowledge.
However, we expect that a well-performing one
would tend to pick up rules that resemble what we
know. To verify this, we obtain samples (listed in
Table 4) from p̂(a | x,y) using the importance
sampling algorithm described in §3.3. We find that
our NFST model has learned to align phonemes
and graphemes, generating them alternately. It has
no problem picking up obvious pairs in the English
orthography (e.g. (S, c h), and (N, n g)). We also
find evidence that the model has picked up how
context a�ects alignment: for example, the model
has learned that the bigram ‘gh’ is pronounced
di�erently in di�erent contexts: in ‘onslaught,’
it is aligned with O in the sequence ‘augh;’ in
‘Willingham,’ it spans over two phonemes N h; and
in ‘ghezzi,’ it is aligned with the phoneme g. We
also find that our NFST has no problem learning
phoneme-grapheme alignments that span over two
arcs, which is beyond the capability of ordinary
WFSTs.

D Algorithms and Full Tables



Algorithm 1 Compute approximate gradient for updating G✓

Require: G✓ : A! R is an NFST scoring function, q is a distribution over paths, M 2 N is the sample
size

1: function G��-G�������(G✓, M , q)
2: for m in 1 . . .M do
3: a(m) ⇠ q

4: w̃
(m)  expG✓(a(m))

q(a)
5: end for
6: Ẑ  

PM
m=1 w̃

(m)

7: for m in 1 . . .M do
8: w

(m)  w̃(m)

Ẑ
9: end for

10: return �
PM

m=1w
(m)r✓G✓(a(m))

11: end function

Algorithm 2 Training procedure for G✓.
Require: (T , G✓) is an NFST, D = {(x1,y1) . . . (x|D|,y|D|)} is the training dataset, LR : N! R is a

learning rate scheduler, ✓0 are the initial parameters of G✓, M is a given sample size, maxEpoch 2 N
is the number of epochs to train for

1: procedure T����(T , G✓, D, LR, ✓0, M , maxEpochs)
2: for epoch 2 [1 . . .maxEpochs] do
3: for (xi,yi) 2 shu✏e(D) do
4: T 0  xi � T � yi

5: Construct distribution q(· | T 0) according to equation (8)
6: u G��-G�������(G✓,M, q) (listed in Algorithm 1)
7: ✓  ✓ � LR(epoch)⇥ u
8: (Optional) update the parameters of q(· | T 0).
9: end for

10: end for
11: end procedure

Exact Match Edit Distance

Dev Test Dev Test

P2G G2P Avg. P2G G2P Avg. P2G G2P Avg. P2G G2P Avg.

AP 17.0 39.4 28.2 18.6 37.8 28.2 1.84 1.186 1.513 1.782 1.152 1.467
Reranking AP 21.2 44.2 32.7 22.6 41.0 31.8 1.604 1.034 1.319 1.624 1.04 1.332
Reranking External 22.2 44.4 33.3 24.2 41.2 32.7 1.606 0.988 1.297 1.59 1.006 1.298
Reranking AP + External 22.0 42.0 32.0 24.0 40.0 32.0 1.608 1.01 1.309 1.588 1.018 1.303

Table 6: Comparison of decoding methods on G2P and P2G. Exact match % accuracy (higher is better) and edit
distance (lower is better).

Exact Match Edit Distance

Dev Test Dev Test

P2G G2P Avg. P2G G2P Avg. P2G G2P Avg. P2G G2P Avg.

-IPA -P���� 21.2 42.4 31.8 21.2 37.4 29.3 1.708 1.052 1.38 1.618 1.128 1.373
+IPA -P���� 20.4 42.2 31.3 20.2 38.2 29.2 1.692 1.042 1.367 1.714 1.148 1.431
+IPA +P���� 21.2 44.2 32.7 22.6 41.0 31.8 1.604 1.034 1.319 1.624 1.04 1.332

Table 7: Exact match % accuracy (higher is better) and edit distance (lower is better) on G2P and P2G. The
e�ectiveness of di�erent FST designs.


