A Finite-state transducers

A.1 Rational Relations

A relation is a set of pairs—in this paper, a subset
of 3* x A¥*, so it relates strings over an “input”
alphabet X to strings over an “output” alphabet A.

A weighted relation is a function R that maps
any string pair (x,y) to a weight in R>.

We say that the relation R is rational if R can
be defined by some weighted finite-state transducer
(FST) 7. As formalized in Appendix A.3, this means
that R(x, y) is the total weight of all accepting paths
in 7 that are labeled with (x,y) (which is O if there
are no such accepting paths). The weight of each
accepting path in 7 is given by the product of its
arc weights, which fall in R+ .

The set of pairs support(R) = {(x,y)
R(x,y) > 0} is then said to be a regular rela-
tion because it is recognized by the unweighted FST
obtained by dropping the weights from 7. In this
paper, we are interested in defining non-rational
weighting functions R with this same regular sup-
port set.

A.2 Finite-state transducers

We briefly review finite-state transducers
(FSTs). Formally, an FST is a tuple 7o =
(X,A,Q, Ag, I, F) where

* 3 is a finite input alphabet
* A is a finite output alphabet

* (Q is a finite set of states

* Ay CQxQx(ZU{e}) x (AU{e})isthe
set of weighted arcs

» [C @ is the set of initial states (conventionally
1] =1)

o [’ C (@ is the set of final states

Leta=ay...ap (for T' > 0) be an accepting path
in 7o, that is, each a; = (¢;—1, ¢;, 04, 0;) € Ap and
qo € I,qr € F. We say that the input and output
strings of a are o - - - op and &1 - - - O.

A.3 Real-valued weighted FSTs

Weighted FSTs (WFSTs) are defined very simi-
larly to FSTs. A WEST is formally defined as
a 6-tuple, just like an (unweighted) FST: T =
(3,A,Q, A, I, F),witharcs carrying weights: A C
QxQx (ZU{e}) x (Au{e}) x R. Compared to

FST arcs in Appendix A.2, a WEST arc each a; =
(¢i—1,49i,04,0i, ;) € A has weight ;. We also
define the weight of a to be w(a) £ Q| k; € R.
The weight of the entire WFST 7T is defined as
the total weight (under &) of all accepting paths:

Tl £ @w(a) eER

a

(14)

More interestingly, the weight 7 [x, y] of a string
pairx € ¥*,y € A* is given by similarly summing
w(a) over just the accepting paths a whose input
string is x and output string is y.

B Training Procedure Details

We use stochastic gradient descent (SGD) to train
Gy. For each example, we compute the gradient
using normalized importance sampling over an
ensemble of 512 particles (paths), the maximum
that we could compute in parallel. By using a
large ensemble, we reduce both the bias (from
normalized importance sampling) and the variance
of the gradient estimate; we found that smaller
ensembles did not work as well. Thus, we used only
one example per minibatch.

We train the ‘clamped’ proposal distribution
g¢(a| x o T oy) differently from the ‘free’ ones
gp(a | xoT) and gy(a | 7 oy). The clamped
distribution is trained alternately with G, as listed
in Algorithm 2. We evaluate on the development
dataset at the end of each epoch using the Reranking
External method described in §4.3. When the EM
accuracy stops improving, we fix the parameters of
Gg and start training gg (a | xo7) and gg(a | Toy)
on the inclusive KL divergence objective function,
using methods described in (Lin and Eisner, 2018).
We then initialize the free distributions’ RNNs using
those of the clamped distributions. We train the free
proposal distributions for 30 epochs, and evaluate
on the development dataset at the end of each epoch.
Results from the best epochs are reported in this

paper.
C Further Analyses

C.1 Does feeding alignments into the decoder
help?
In particular, we attribute our models’ outperforming
Neuralized IBM Model 1 to the fact that a complete
history of past alignments is remembered in the
RNN state. (Wu et al., 2018) noted that in charac-
ter transduction tasks, past alignment information
seemed to barely affect decoding decisions made

Input / Output Paths P(a | x,y)

, . em ma aar:fceheee 96.5%
/maaif/ T .
n’larchc‘:’ exm m:a airie €:f cie hie ete 2.5%
e:xm m:a ate exxr:f cie hie ee 1.0%
, , enomnie e:ssil 1o aze uze gre ht tie 76.3%
/omslot/ Sonnsslloaeueoehtt q
onslaught e omns sl lioae uie gie hit tie 21.4%
i enomne es sl Lo ate ute gie hie et tie 1.5%
/wilmpham/ exw Wiritl e lie exr ity nie gie e:h hio aze e:xm m:e 40.1%
Willing- cw Weriil lie Liricy nie gie e:h hio ate exm mee 36.6%
ham cw Wericl e Lrity nie gth hie aze exm mee 7.4%
/gez1/ :ggiehieezzzenzie 98.8%
ghezzi eg giehie ez zir zie ite 1.2%

Table 5: Most probable paths from x o 7 o y under the
approximate posterior distribution.

afterwards. However, we empirically find that there
is performance gain by explicitly modeling past
alignments. This also shows up in our preliminary
experiments with non-input-feeding seq2seq mod-
els, which resulted in about 1% of lowered accuracy
and about 0.1 longer edit distance.

C.2 Interpretability of learned NFST paths

The model is not required to learn transduction
rules that conform to our linguistic knowledge.
However, we expect that a well-performing one
would tend to pick up rules that resemble what we
know. To verify this, we obtain samples (listed in
Table 4) from p(a | x,y) using the importance
sampling algorithm described in §3.3. We find that
our NFST model has learned to align phonemes
and graphemes, generating them alternately. It has
no problem picking up obvious pairs in the English
orthography (e.g. (f, ¢ h), and (1, n g)). We also
find evidence that the model has picked up how
context affects alignment: for example, the model
has learned that the bigram ‘gh’ is pronounced
differently in different contexts: in ‘onslaught,’
it is aligned with o in the sequence ‘augh;’ in
‘Willingham,’ it spans over two phonemes 1 h; and
in ‘ghezzi,’ it is aligned with the phoneme g. We
also find that our NFST has no problem learning
phoneme-grapheme alignments that span over two
arcs, which is beyond the capability of ordinary
WESTs.

D Algorithms and Full Tables

Algorithm 1 Compute approximate gradient for updating Gg

Require: Gg : A — Ris an NFST scoring function, ¢ is a distribution over paths, M € N is the sample

size

function GET-GrADIENT(Gg, M, q)
for minl...M do

alm ~ g

(™)

exp Gp(al™)
q(a)

Z M ptm)
for minl...M do

w™)

1:
2
3
4
5: end for
6
7
8
9

(M)

: end for
10: return — Zf\f:l w™VeGg(al™)
11: end function

Algorithm 2 Training procedure for Gg.

Require: (7, Gg) is an NFST, D = {(x1,y1) .. (X|p|,¥|p|) } is the training dataset, LR : N — Ris a
learning rate scheduler, 8 are the initial parameters of Gg, M is a given sample size, maxEpoch € N
is the number of epochs to train for

1:
2
3
4:
5:
6
7
8
9

procedure TrRaIN(T, Gg, D, LR, 8y, M, maxEpochs)
for epoch € [1...maxEpochs| do
for (x;,y;) € shuffle(D) do

T x0T oy,

Construct distribution ¢(- | 7") according to equation (8)
u < GeT-GrADIENT(Gg, M, q) (listed in Algorithm 1)

0 + 6 — LR(epoch) x u
(Optional) update the parameters of ¢(- | 7).

end for

10: end for
11: end procedure

Exact Match Edit Distance
Dev Test Dev Test
P2G G2P Avg. P2G G2P Avg. P2G G2P Avg. P2G G2P Avg.
AP 170 394 282 18.6 378 282 1.84 1.186 1.513 1.782 1.152 1.467
Reranking AP 212 442 327 226 41.0 31.8 1.604 1.034 1319 1.624 1.04 1.332
Reranking External 222 444 333 242 412 327 1.606 0988 1.297 1.59 1.006 1.298
Reranking AP + External 22.0 42.0 32.0 24.0 400 32.0 1.608 1.01 1.309 1588 1.018 1.303

Table 6: Comparison of decoding methods on G2P and P2G. Exact match % accuracy (higher is better) and edit
distance (lower is better).

Exact Match Edit Distance
Dev Test Dev Test
P2G G2P Avg. P2G G2P Avg. P2G G2P Avg. P2G G2P Avg.
-IPA -PHONE 212 424 31.8 212 374 293 1.708 1.052 1.38 1.618 1.128 1.373
+IPA -PuoNne 204 422 31.3 202 382 292 1.692 1.042 1367 1714 1.148 1431
+IPA +PuoNneE 212 442 327 226 41.0 31.8 1.604 1.034 1319 1.624 1.04 1.332

Table 7: Exact match % accuracy (higher is better) and edit distance (lower is better) on G2P and P2G. The
effectiveness of different FST designs.

