

Unsupervised Disambiguation of Syncretism in Inflected Lexicons Ryan Cotterell, Christo Kirov, Sebastian J. Mielke, Jason Eisner Department of Computer Science, Johns Hopkins University, Baltimore, USA

A lexicon contains syncretism

Wort	Wort	N;sg;nom	
Wort	Wortes	N;sg;gen	
Wort	Wort	N;sg;acc	
Wort	Worte	N;sg;dat	
Wort	Wörter	N;pl;nom	
Wort	Wörter	N;pl;gen	
Wort	Wörter	N;pl;ACC	
Wort	Wörtern	N;pl;dat	
Herr	Herr	N;sg;nom	
Herr	Herrn	N;sg;gen	
Herr	Herrn	N;sg;acc	
Herr	Herrn	N;sg;dat	
Herr	Herren	N;pl;nom	
Herr	Herren	N;pl;gen	
Herr	Herren	N;pl;ACC	
Herr	Herren	N;pl;dat	
• • •	•••	•••	
	\sim	\sim	

UniMorph (Kirov et al., 2018) How frequent are any of these forms in natural text?

We could just count "Wortes" in unlabeled data, but what about "Wort"?

	Wort (N) NOM GEN ACC DAT	Wortes Wort	PL Wörter Wörter Wörter Wörtern
Herr NO GE AC DA	IN Herrn IC Herrn	PL Herren Herren Herren Herren	

Note: Syncretism commonly refers to intraparadigmatic ambiguity of forms, but we also handle inter-paradigmatic ambiguity.

Languages

Chosen to be high-resource, so we can compare to gold data.

Data provenance

- UniMorph (Kirov et al., 2018)
- \rightarrow Only type-level, no counts
- Wikipedia
- \rightarrow read off form counts
- (possible for any language; unsupervised)
- \rightarrow Lemmatize & tag with UDPipe (Straka et al., 2016) (only used for eval, requires high-resource language)
 - \rightarrow Convert to UniMorph format (discard up to 31%)

Model $p_{\theta}(t, \ell, s, f)$ jointly

We define a *latent-variable* graphical model over *POS* tags t, lemmata ℓ , slots *s*, and forms *f* :

For $p_{\theta}(s \mid t)$, we evaluate three ablations, p(t) and $p(\ell \mid t)$ are unrestricted distributions with support on all seen values, and $p(f \mid t, \ell, s)$ is 1 iff $\langle \ell, f, ts \rangle$ is in the lexicon.

We train all distributions to maximize observed form counts: $\sum_{f} c(f) \log p_{\theta}(f) = \sum_{f} c(f) \log \sum_{f} p_{\theta}(t) p_{\theta}(s \mid t) p_{\theta}(f \mid t, \ell, s),$

Evaluation

Perplexity (\downarrow) of our generative model on held-out tokens.

KL-divergence (1) between our *unsupervised* distribution p_{θ} (trained only on unigram form counts and the unweighted lexicon) and the *supervised* distribution \hat{p} (trained on lemma- and slot-annotated text produced by an existing supervised and contextual tagger):

$$\mathbb{E}_{f \sim \hat{p}} \operatorname{KL}(\hat{p}(\cdot|f) || p_{\theta}(\cdot|f)) = \frac{1}{N} \sum_{i=1}^{N} \log_2 \frac{\hat{p}(t_i, \ell_i, s_i|)}{p_{\theta}(t_i, \ell_i, s_i|)}$$

UNIFORM would have KL = 0 if all forms were either unambiguous or uniformly ambiguous, the fact that it doesn't means the task is nontrivial. NEURAL matches the supervised distributions reasonably closely, achieving an average KL of < 1 bit on all languages but German.

finite (as the lexicon is) and tractable!

Assign "counts" to forms using the conditional

Extracting the conditional $p_{\theta}(t, \ell, s \mid f)$ from the modeled joint is easy:

$$p_{\theta}(t, \ell, s \mid f) = p_{\theta}(t, \ell, s, f) / \underbrace{p_{\theta}(f)}_{=c(f)/\sum_{f'}}$$

Then we only need to multiply with fo *counts* (denoted $c(\cdot)$; can be taken from unlabeled text):

$$c(t,\ell,s,f) = c(f) \cdot p_{\theta}(t,\ell,s \mid f)$$

e.g., assuming that c(Worter) = 6:

c(N, Wort, PL; GEN, Wörter) <

 $= c(\text{Wörter}) \cdot p_{\theta}(N, \mathcal{W}ort, PL; GEN \mid Wör$

Note: Imputing the counts in this way can also be seen as the E-step of EM training, an alternative way to maximize our log-likelihood objective.

JOHNS HOPKINS WHITING SCHOOL

of ENGINEERING

f)				
	1.7	Wort	Wort	N;sg;nom
`	2	Wort	Wortes	N;sg;gen
)	1.3	Wort	Wort	N;sg;acc
, c(f')	4	Wort	Worte	N;sg;dat
,	3.4	Wort	Wörter	N;pl;nom
orm	1.3	Wort	Wörter	N;pl;gen
om	1.3	Wort	Wörter	N;pl;ACC
/	3	Wort	Wörtern	N;pl;dat
/	8	Herr	Herr	N;sg;nom
 	1.3	Herr	Herrn	N;sg;gen
	1.2	Herr	Herrn	N;sg;acc
	1.5	Herr	Herrn	N;sg;dat
 	1.2	Herr	Herren	N;pl;nom
/	1.3	Herr	Herren	N;pl;gen
	1.4	Herr	Herren	N;pl;ACC
	1.1	Herr	Herren	N;pl;dat
		• • •	•••	
orter)				
		\searrow	\sim	

Count-annotated UniMorph

So what?

Convert artificial lexicons into "real" data, bridging the gap from *types* to tokens.

Our "counts" can be used for weighting in many morphology-aware NLP tasks (e.g., smoothing of embeddings). Specifically, we use it for the SIGMORPHON 2018 shared task to split dataset by frequency (simulating real application scenarios).

Code and data