
A Supplemental Material to accompany
Deep contextualized word

representations

This supplement contains details of the model ar-
chitectures, training routines and hyper-parameter
choices for the state-of-the-art models in Section
4.

All of the individual models share a common ar-
chitecture in the lowest layers with a context inde-
pendent token representation below several layers
of stacked RNNs – LSTMs in every case except
the SQuAD model that uses GRUs.

A.1 Fine tuning biLM

As noted in Sec. 3.4, fine tuning the biLM on task
specific data typically resulted in significant drops
in perplexity. To fine tune on a given task, the
supervised labels were temporarily ignored, the
biLM fine tuned for one epoch on the training split
and evaluated on the development split. Once fine
tuned, the biLM weights were fixed during task
training.

Table 8 lists the development set perplexities for
the considered tasks. In every case except CoNLL
2012, fine tuning results in a large improvement in
perplexity, e.g., from 72.1 to 16.8 for SNLI.

The impact of fine tuning on supervised perfor-
mance is task dependent. In the case of SNLI,
fine tuning the biLM increased development accu-
racy 0.6% from 88.9% to 89.5% for our single best
model. However, for sentiment classification de-
velopment set accuracy is approximately the same
regardless whether a fine tuned biLM was used.

A.2 Importance of � in Eqn. (1)

The � parameter in Eqn. (1) was of practical im-
portance to aid optimization, due to the differ-
ent distributions between the biLM internal rep-
resentations and the task specific representations.
It is especially important in the last-only case in
Sec. 5.1. Without this parameter, the last-only
case performed poorly (well below the baseline)
for SNLI and training failed completely for SRL.

A.3 Textual Entailment

Our baseline SNLI model is the ESIM sequence
model from Chen et al. (2017). Following the
original implementation, we used 300 dimensions
for all LSTM and feed forward layers and pre-
trained 300 dimensional GloVe embeddings that
were fixed during training. For regularization, we

Dataset Before
tuning

After
tuning

SNLI 72.1 16.8
CoNLL 2012 (coref/SRL) 92.3 -
CoNLL 2003 (NER) 103.2 46.3

SQuAD Context 99.1 43.5
Questions 158.2 52.0

SST 131.5 78.6

Table 8: Development set perplexity before and after
fine tuning for one epoch on the training set for vari-
ous datasets (lower is better). Reported values are the
average of the forward and backward perplexities.

added 50% variational dropout (Gal and Ghahra-
mani, 2016) to the input of each LSTM layer and
50% dropout (Srivastava et al., 2014) at the input
to the final two fully connected layers. All feed
forward layers use ReLU activations. Parame-
ters were optimized using Adam (Kingma and Ba,
2015) with gradient norms clipped at 5.0 and ini-
tial learning rate 0.0004, decreasing by half each
time accuracy on the development set did not in-
crease in subsequent epochs. The batch size was
32.

The best ELMo configuration added ELMo vec-
tors to both the input and output of the lowest
layer LSTM, using (1) with layer normalization
and � = 0.001. Due to the increased number of
parameters in the ELMo model, we added `

2 reg-
ularization with regularization coefficient 0.0001
to all recurrent and feed forward weight matrices
and 50% dropout after the attention layer.

Table 9 compares test set accuracy of our sys-
tem to previously published systems. Overall,
adding ELMo to the ESIM model improved ac-
curacy by 0.7% establishing a new single model
state-of-the-art of 88.7%, and a five member en-
semble pushes the overall accuracy to 89.3%.

A.4 Question Answering
Our QA model is a simplified version of the model
from Clark and Gardner (2017). It embeds to-
kens by concatenating each token’s case-sensitive
300 dimensional GloVe word vector (Penning-
ton et al., 2014) with a character-derived embed-
ding produced using a convolutional neural net-
work followed by max-pooling on learned char-
acter embeddings. The token embeddings are
passed through a shared bi-directional GRU, and
then the bi-directional attention mechanism from
BiDAF (Seo et al., 2017). The augmented con-



Model Acc.
Feature based (Bowman et al., 2015) 78.2
DIIN (Gong et al., 2018) 88.0
BCN+Char+CoVe (McCann et al., 2017) 88.1
ESIM (Chen et al., 2017) 88.0
ESIM+TreeLSTM (Chen et al., 2017) 88.6
ESIM+ELMo 88.7 ± 0.17
DIIN ensemble (Gong et al., 2018) 88.9
ESIM+ELMo ensemble 89.3

Table 9: SNLI test set accuracy.3Single model results occupy the portion, with ensemble results at the bottom.

text vectors are then passed through a linear layer
with ReLU activations, a residual self-attention
layer that uses a GRU followed by the same atten-
tion mechanism applied context-to-context, and
another linear layer with ReLU activations. Fi-
nally, the results are fed through linear layers to
predict the start and end token of the answer.

Variational dropout is used before the input to
the GRUs and the linear layers at a rate of 0.2. A
dimensionality of 90 is used for the GRUs, and
180 for the linear layers. We optimize the model
using Adadelta with a batch size of 45. At test
time we use an exponential moving average of the
weights and limit the output span to be of at most
size 17. We do not update the word vectors during
training.

Performance was highest when adding ELMo
without layer normalization to both the input and
output of the contextual GRU layer and leaving the
ELMo weights unregularized (� = 0).

Table 10 compares test set results from the
SQuAD leaderboard as of November 17, 2017
when we submitted our system. Overall, our sub-
mission had the highest single model and ensem-
ble results, improving the previous single model
result (SAN) by 1.4% F1 and our baseline by
4.2%. A 11 member ensemble pushes F1 to
87.4%, 1.0% increase over the previous ensemble
best.

A.5 Semantic Role Labeling

Our baseline SRL model is an exact reimplemen-
tation of (He et al., 2017). Words are represented
using a concatenation of 100 dimensional vector
representations, initialized using GloVe (Penning-
ton et al., 2014) and a binary, per-word predicate
feature, represented using an 100 dimensional em-
bedding. This 200 dimensional token represen-
tation is then passed through an 8 layer “inter-

leaved” biLSTM with a 300 dimensional hidden
size, in which the directions of the LSTM layers
alternate per layer. This deep LSTM uses High-
way connections (Srivastava et al., 2015) between
layers and variational recurrent dropout (Gal and
Ghahramani, 2016). This deep representation is
then projected using a final dense layer followed
by a softmax activation to form a distribution over
all possible tags. Labels consist of semantic roles
from PropBank (Palmer et al., 2005) augmented
with a BIO labeling scheme to represent argu-
ment spans. During training, we minimize the
negative log likelihood of the tag sequence using
Adadelta with a learning rate of 1.0 and ⇢ = 0.95

(Zeiler, 2012). At test time, we perform Viterbi
decoding to enforce valid spans using BIO con-
straints. Variational dropout of 10% is added to
all LSTM hidden layers. Gradients are clipped if
their value exceeds 1.0. Models are trained for 500
epochs or until validation F1 does not improve for
200 epochs, whichever is sooner. The pretrained
GloVe vectors are fine-tuned during training. The
final dense layer and all cells of all LSTMs are ini-
tialized to be orthogonal. The forget gate bias is
initialized to 1 for all LSTMs, with all other gates
initialized to 0, as per (Józefowicz et al., 2015).

Table 11 compares test set F1 scores of our
ELMo augmented implementation of (He et al.,
2017) with previous results. Our single model
score of 84.6 F1 represents a new state-of-the-art
result on the CONLL 2012 Semantic Role Label-
ing task, surpassing the previous single model re-
sult by 2.9 F1 and a 5-model ensemble by 1.2 F1.

A.6 Coreference resolution

Our baseline coreference model is the end-to-end
neural model from Lee et al. (2017) with all hy-

3A comprehensive comparison can be found at https:
//nlp.stanford.edu/projects/snli/



Model EM F1

BiDAF (Seo et al., 2017) 68.0 77.3
BiDAF + Self Attention 72.1 81.1
DCN+ 75.1 83.1
Reg-RaSoR 75.8 83.3
FusionNet 76.0 83.9
r-net (Wang et al., 2017) 76.5 84.3
SAN (Liu et al., 2017) 76.8 84.4
BiDAF + Self Attention + ELMo 78.6 85.8
DCN+ Ensemble 78.9 86.0
FusionNet Ensemble 79.0 86.0
Interactive AoA Reader+ Ensemble 79.1 86.5
BiDAF + Self Attention + ELMo Ensemble 81.0 87.4

Table 10: Test set results for SQuAD, showing both Exact Match (EM) and F1. The top half of the table contains
single model results with ensembles at the bottom. References provided where available.

Model F1

Pradhan et al. (2013) 77.5
Zhou and Xu (2015) 81.3
He et al. (2017), single 81.7
He et al. (2017), ensemble 83.4
He et al. (2017), our impl. 81.4
He et al. (2017) + ELMo 84.6

Table 11: SRL CoNLL 2012 test set F1.

Model Average F1

Durrett and Klein (2013) 60.3
Wiseman et al. (2016) 64.2
Clark and Manning (2016) 65.7
Lee et al. (2017) (single) 67.2
Lee et al. (2017) (ensemble) 68.8
Lee et al. (2017) + ELMo 70.4

Table 12: Coreference resolution average F1 on the test
set from the CoNLL 2012 shared task.

perparameters exactly following the original im-
plementation.

The best configuration added ELMo to the in-
put of the lowest layer biLSTM and weighted the
biLM layers using (1) without any regularization
(� = 0) or layer normalization. 50% dropout was
added to the ELMo representations.

Table 12 compares our results with previously
published results. Overall, we improve the single
model state-of-the-art by 3.2% average F1, and our
single model result improves the previous ensem-
ble best by 1.6% F1. Adding ELMo to the output
from the biLSTM in addition to the biLSTM input
reduced F1 by approximately 0.7% (not shown).

A.7 Named Entity Recognition

Our baseline NER model concatenates 50 dimen-
sional pre-trained Senna vectors (Collobert et al.,
2011) with a CNN character based representation.
The character representation uses 16 dimensional
character embeddings and 128 convolutional fil-
ters of width three characters, a ReLU activation
and by max pooling. The token representation is
passed through two biLSTM layers, the first with
200 hidden units and the second with 100 hid-
den units before a final dense layer and softmax
layer. During training, we use a CRF loss and at
test time perform decoding using the Viterbi algo-
rithm while ensuring that the output tag sequence
is valid.

Variational dropout is added to the input of both
biLSTM layers. During training the gradients are
rescaled if their `2 norm exceeds 5.0 and param-
eters updated using Adam with constant learning
rate of 0.001. The pre-trained Senna embeddings
are fine tuned during training. We employ early
stopping on the development set and report the av-
eraged test set score across five runs with different
random seeds.

ELMo was added to the input of the lowest layer
task biLSTM. As the CoNLL 2003 NER data set
is relatively small, we found the best performance
by constraining the trainable layer weights to be
effectively constant by setting � = 0.1 with (1).

Table 13 compares test set F1 scores of our
ELMo enhanced biLSTM-CRF tagger with previ-
ous results. Overall, the 92.22% F1 from our sys-
tem establishes a new state-of-the-art. When com-
pared to Peters et al. (2017), using representations



Model F1 ± std.
Collobert et al. (2011)| 89.59
Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.2
Chiu and Nichols (2016)|,} 91.62 ± 0.33
Peters et al. (2017)} 91.93 ± 0.19
biLSTM-CRF + ELMo 92.22 ± 0.10

Table 13: Test set F1 for CoNLL 2003 NER task. Mod-
els with | included gazetteers and those with } used
both the train and development splits for training.

Model Acc.
DMN (Kumar et al., 2016) 52.1
LSTM-CNN (Zhou et al., 2016) 52.4
NTI (Munkhdalai and Yu, 2017) 53.1
BCN+Char+CoVe (McCann et al., 2017) 53.7
BCN+ELMo 54.7

Table 14: Test set accuracy for SST-5.

from all layers of the biLM provides a modest im-
provement.

A.8 Sentiment classification
We use almost the same biattention classification
network architecture described in McCann et al.
(2017), with the exception of replacing the final
maxout network with a simpler feedforward net-
work composed of two ReLu layers with dropout.
A BCN model with a batch-normalized maxout
network reached significantly lower validation ac-
curacies in our experiments, although there may
be discrepancies between our implementation and
that of McCann et al. (2017). To match the CoVe
training setup, we only train on phrases that con-
tain four or more tokens. We use 300-d hidden
states for the biLSTM and optimize the model pa-
rameters with Adam (Kingma and Ba, 2015) us-
ing a learning rate of 0.0001. The trainable biLM
layer weights are regularized by � = 0.001, and
we add ELMo to both the input and output of the
biLSTM; the output ELMo vectors are computed
with a second biLSTM and concatenated to the in-
put.


