Appendices
A Submodularity of f and ¢

Remember that f and ¢ are defined on P as

FX)=g(Vx), eX)=) b,

veEVY

where Vy = Upe x Vp: Vp € V is a vertex subset
that is included in path p € P.

We first see that f is a submodular function. Let
X CYandp ¢ Y, then f satisfies the diminishing
return property as follows:

flp] X)=9(V, | Vx)
>g9(Vp | W)
=flp| W),

where the inequality comes from Vx C V3 and
the submodularity of g; it may occur that V), is
included in V4 (and V), but in such a case we
have f(p | Y) = 0 (and f(p | X) = 0), which
does not affect the conclusion. The monotonicity
of f is confirmed readily from the monotonicity of
g, and f(0) = 0 comes from g(0)) = 0.

We then see that c is a submodular function. For
X CYandp ¢ Y, the diminishing return property
holds as follows:

clp| X) =

> 0

UEVP\VX

> > b

UEVP\VY
=c(p|Y),

where we use V,\Vy C V,\Vx and ¢, > 0 (v €
V). Similar to the above, V), C Vy (and V), C V)
does not affect the conclusion. The monotonicity
of c and ¢(0)) = 0 are also easily obtained.

B Proof of Theorem 1

As is customary in the analysis of greedy algo-
rithms for submodular knapsack problems (Khuller
et al., 1999; Sviridenko, 2004), we introduce the
following indexing of selected elements in P. Let
X* C P be an optimal solution and ¢ be the num-
ber of iterations executed by the algorithm until
the first time at which p € X™ is considered but
not added to the output solution, X, because of the
violation of the knapsack constraint. We denote
the number of elements added in the first ¢ steps
by d. If ¢(X + p) > L and p ¢ X* occur in the

loops of the algorithm, then such p does not affect
the analysis of approximation ratio. Therefore, we
suppose that such p is removed from P in advance.
Considering the above, we can define a sequence
P1, P2, ... so that p; is the i-th element added to X
fori =1,...,dand pgy is the first element in X*
that is considered by the algorithm but not added to
X due to the violation of the knapsack constraint.
We define X; .= {p1,...,p;}fori=1,....d+1
and Xg := 0.

For given subset Q = {q1,...,qx} C P, path
g € Q is said to be maximal in (Q if no ¢ € Q
satisfies V; C V. A set of paths, Q C Q,isa
maximal path cover IMPC) of) if all § € Q are
maximal in) and VQ = Vg holds. Since @ is
defined on tree T, any (C P has a unique MPC
Q C P. Furthermore, for any ¢ € @, there exists
at least one § € Q satisfying V, C V.

Lemma 1. Given any Z,Z* C P, we define

{ql,...,qK} =7"—Z, Zj ZZZ—‘r{ql,...,q]'}
(j € [K]) and Zy = Z. Then the MPC
{G1,...,dm} of Z* — Z satisfies

K M R

Y fla 1 Zi—) =D F(d5 | Zj-),

j=1 j=1

where Zj =Z+{q,...,q4;} and Zo=Z.

Proof. Since {G1,...,q4n} is the MPC of Z* —
Z, for any q € Z* — Z, there exists a § €
{q1,...,qu} satisfying V;, C Vj;. Therefore,

Z*—Z can be divided into M subsets {q}, .. ., g}, }
(i € [M]) satisfying

ti - C V:JZ@ =V; (AD)
Namely, qzi, . ,qzi are subpaths of §;; if some

q € Q is included in multiple maximal paths, we
arbitrarily choose one such maximal path to which
q belongs. Thus all elements in Z* — Z are indexed
as follows:

VA

1 1 2 2 M M
:{qlv"'7qk17q17"'7Qk27"'7Q1)"'7qk1u}'

.q.}if j < kand
q;-:k := () otherwise. For any maximal path §; €
{G1,...,4m} and any Zsuchthat Z C Z C Z*,

We define q}k = {qj-, Q§+1> e

we have

flai| 2)

=g(V;UV;) —9g(Vy)
=9(VzUVy) —g(VzU Vq;i_l)

+ g(VZ U V:]lii—) — g(VZ U tii_Q)

T
+9(VzU V) —9(Vy)

=g(VyU V‘]i:ki) —g(Vy U Vi ﬁl)
+9(VZUVq;ki_l) 9(Vy UVt)
T
+9(VzUVe) —9(Vy)

= f(ah | Z+ dhp,—1) + F(@h,1 | Z + g —s)
+--+ flar | 2),

where the third equality comes from (A1l). Note
that the value of 3= ;¢ f(q5 | Zj—1) = f(Z7) —
f(Z) is independent of the order of elements in
Z* — Z. Thus, rearranging the order of summation
yields

K Mk o .
Z (g5 | Zj—1) = ZZ f(g | Zie1 +q15-1)
j=1 i=1 j=1

M

=3 14| Zi-).
j=1

g

For an optimal subtree X* C P in T, we let
X denote a subtree of X* that is included in the
i-th sentence tree T; (i € [IN]). We define \; as the
number of leaves of T;. Note that, if Q; C P is
the MPC of X, then we have |Q;| < \; (i.e., the
number of paths in MPC is bounded by the number
of leaves). Let A := max;c[n] Ai. Then we have
the following lemma.

Lemma 2. Fori=1,...,d+ 1, we have

J(Xq) — f(Xio1)

c(pi | Xi-1) %
> AP LAz eoesy _p(X).
>) 0 g,
Proof. Let {qi,...,qx} = X" — X;_1, Z; =
Xio1 +{q1,...,¢j} and Zy = X;_;. From

Lemma 1 with Z* = X* and Z = X;_1, MPC

Q ={q,..., G4} of X* — X;_1 satisfies

F(X7) = Z (9 1 Z
M
:Z (g5 | ZJ 1)
where Zj =X, 1+ {(jl,...,(jj} (g e [M]) and

Zo=X;_1. By using submodularity, we obtain

<.
I
—

IA
M=
=
§>
~

<.
Il
—

f(@; | Xi-1).

<
Il
—_

&i

X;
Since p; = = argmaX,gx, , %

filXi—1) < f(g;1Xi—1) .
PiIX 1) > C((jg]'|Xi71) forallj=1,..., M.
Hence we obtain

c(pi | Xio1)(f(X7) =

holds, we

have

f(Xz 1)) (A2)

M
c(pi | Xima Z (g | Xi-1)

M
f(pi | Xi1) Z %|le

We now bound ij‘il ¢(g;j | Xij—1) from above as
follows. By using submodularity, we obtain

M M
> @i | Xic1) < eldy)
j=1

(A3)

Note that Q = {G1,...,4m} can be partitioned
into N subsets 1, ..., Q) of maximal paths so
that all ¢ € Q; include r;; we have Vg, NV, = 0
for ¢ # j since each Q; (i € [N]) is defined on the
i-th sentence tree, T;. Using these definitions, we
obtain

M
doca) = D¢
j=1

1€[N] qeQ;

-y Yy

1€[N] q€Q; vEV,

Since we have |Q;| < \;, each v € Vy, is included
in at most \; maximal paths in ();. Thus we have

DD <A Y <A Y L

qEQ; vEV], ’UEVQFL UEVQi

Furthermore, since Q = {d1, ..., 4y} C X* satis-
fies the knapsack constraint, we have

Yoo b= bo=c{d,-- du

i€[N]veEVy, veEVy

}) <L

From the above inequalities, we obtain

Sei=Y Y Y4

j=1 i€[N] q€Qi veV,

<SAY D 4y <AL

i€[NJveVq,

(A4)

Combining (A2), (A3) and (A4), we obtain

c(pi | Xim)(f(X7) = f(Xiz1))
< f(pi | Xi—1)AL.

The claim follows by rearranging terms and using

f(pi | Xi1) = f(X5) — f(Xim). 0
Lemma3. Fori=1,...,d+ 1, we have
f(X3)
d c(pr | Xk-1) .
> <1]£[1<1M>>f(X).

Proof. We prove the lemma by induction on 7 =

.,d+ 1. First, if i = 1, we have X; = {p1}
and thus the claim follows by Lemma 2. Then
we assume the lemma holds for X, ..., X;_1 and
prove that it holds for X;. Combining Lemma 2
and the assumption, we obtain

F(X)
(Xi) + (X)) -
o AP ())

f
(X
<1 Ap: ‘ i 1)) f(Xi1)
L APl Aic1)

f(Xi1))

v

X
(pk | Xk 1)) *
1-— —_— X7).
())
Thus the lemma holds by induction. 0

Theorem 1. Algorithm I achieves at least %(1 —
e~ Y/M-approximation.

X
Proof. Since Y411 Pk 2k1) PelXe—1)

c(Xa+1)
d“ 1— 1. celXe1)) attaing its maximum
A e(Xay)

1 holds,

c(p1lXo) _ _ cay1lXa) 1

when we have £ o(Xs Xar1) = drl
Namely, the following inequality holds:

oy 1 c(pk | Xg-1)
,El(l‘x (Xar1))

1 1 d+1
(1_)\ d+1) '

By using Lemma 3, the above inequality, and the
fact that the knapsack constraint is violated by
adding (d + 1)-th element (i.e., ¢(X441) > L),
we obtain

f(Xa11)
d+1
c(pr | Xg-1)) .
> 11— 1-— X
(kH()) s
i L c(pr | Xp—1) x
> <1—k:1 (1_ e —)) FXY)

This leads to the following inequality:

f(Xag1) = f(Xaq) + f(pas1 | Xa)

> (1— e) fF(X).

We note that the solution, X, obtained by Steps 1-8
in Algorithm 1 satisfies f(X) > f(X;) and that
p chosen in Step 9 satisfies f(p) > f(pa+1 | Xa)-
Therefore, the output of Algorithm 1, which is
defined as Y := argmax x/csx 5 f(X'), satisfies
FY) 25— Vf(x). D

C 1ILP formulations

We present ILP formulations for the three objective
functions described in Section 5. In the experi-
ments, the ILP-based method obtained summaries
by solving the following optimization problems.

Coverage Function

The ILP formulation with the coverage function
can be written as follows:

M
maﬁiinize Jzz:l W,z (AS)
subject to Y lyby < L, (A6)
veV
Vo € V\rliN : bparent(v) > by, (A7)
Vie[M]:) by >z, (A8)
veVj
YoeV: b,€{0,1},
Vje [M]: z€{0,1}.

zj 1s a binary decision variable that indicates
whether the j-th word is contained in the summary
or not. b, is a binary decision variable that rep-
resents whether chunk v € V' is contained in the
summary or not.

Constraint (A6) guarantees that the obtained
summary includes at most I words. Remember
that ;, € V (i € [N]) is the root node of depen-
dency tree T; constructed for the i-th sentence; we
use 7. as shorthand for {ry,...,ry}. Function
parent(v) returns the parent chunk of v € V in the
dependency trees. Therefore, constraint (A7) guar-
antees that the obtained summary comprises some
rooted subtrees of the dependency trees. V; C V
denotes the set of all chunks that include the j-th
word. Thus, constraint (A8) means that at least one
chunk including the j-th word must be chosen in
order to cover the j-th word.

Coverage Function with Rewords

The ILP formulation for this objective function
can be obtained by replacing the objective function
in (AS) with

M N
ijzj - (Z Lyby — me) ,
=1 1

veV =

where - is a hyper parameter that balances the total
weight of covered chunks and the positive reword
term.

ROUGE;

As in (Hirao et al., 2017), compressive summariza-
tion with the ROUGE; objective function can be

formulated as the following ILP:

K M
PIPBEN

maximize
z,b k=1 j=1
subject to Z lyby, < L,
veV

Vk € [K],j € [M]:
Vk € [K],j € [M]:

Ce, (R) > 215, (A9)
> by > 2, (A10)

veV;
Vo € VAFLN ¢ Dparent(v) = o,
YoeV: b,e {01},
Vk e [K|,je[M]: z;€ Zs>o.

We here suppose that the document data con-
tains M distinct unigrams indexed with j € [M];
e;j denotes the j-th unigram, and V; C V' is the set
of all chunks that include e;. Each non-negative
integer variable zj ; counts the number of times
that e; appears both in the k-th reference summary
and in the summary to be output, which we de-
note by S C V. From constraints (A9), (A10), and
> vev; bu = Ce; (5), we see that the objective func-
tion corresponds to the numerator of ROUGE (3)
with n = 1. The remaining parts are similar to
those in the ILP formulation for the coverage func-
tion.

References

Tsutomu Hirao, Masaaki Nishino, and Masaaki Na-
gata. 2017. Oracle summaries of compressive
summarization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 275-280.
https://doi.org/10.18653/v1/P17-2043.

Samir Khuller, Anna Moss, and Joseph S. Naor.
1999. The budgeted maximum coverage prob-
lem. Information Processing Letters 70(1):39-45.
https://doi.org/10.1016/S0020-0190(99)00031-9.

Maxim Sviridenko. 2004. A note on maximizing a
submodular set function subject to a knapsack con-
straint. Operations Research Letters 32(1):41-43.
https://doi.org/10.1016/S0167-6377(03)00062-2.

https://doi.org/10.18653/v1/P17-2043
https://doi.org/10.18653/v1/P17-2043
https://doi.org/10.18653/v1/P17-2043
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2

