Appendices

A Submodularity of *f* and *c*

Remember that f and c are defined on \mathcal{P} as

$$f(X) \coloneqq g(V_X), \qquad c(X) \coloneqq \sum_{v \in V_X} \ell_v$$

where $V_X := \bigcup_{p \in X} V_p$; $V_p \subseteq V$ is a vertex subset that is included in path $p \in \mathcal{P}$.

We first see that f is a submodular function. Let $X \subseteq Y$ and $p \notin Y$, then f satisfies the diminishing return property as follows:

$$f(p \mid X) = g(V_p \mid V_X)$$

$$\geq g(V_p \mid V_Y)$$

$$= f(p \mid V_Y),$$

where the inequality comes from $V_X \subseteq V_Y$ and the submodularity of g; it may occur that V_p is included in V_Y (and V_X), but in such a case we have $f(p \mid Y) = 0$ (and $f(p \mid X) = 0$), which does not affect the conclusion. The monotonicity of f is confirmed readily from the monotonicity of g, and $f(\emptyset) = 0$ comes from $g(\emptyset) = 0$.

We then see that c is a submodular function. For $X \subseteq Y$ and $p \notin Y$, the diminishing return property holds as follows:

$$c(p \mid X) = \sum_{v \in V_p \setminus V_X} \ell_v$$
$$\geq \sum_{v \in V_p \setminus V_Y} \ell_v$$
$$= c(p \mid Y),$$

where we use $V_p \setminus V_Y \subseteq V_p \setminus V_X$ and $\ell_v \ge 0$ ($v \in V$). Similar to the above, $V_p \subseteq V_Y$ (and $V_p \subseteq V_X$) does not affect the conclusion. The monotonicity of c and $c(\emptyset) = 0$ are also easily obtained.

B Proof of Theorem 1

As is customary in the analysis of greedy algorithms for submodular knapsack problems (Khuller et al., 1999; Sviridenko, 2004), we introduce the following indexing of selected elements in \mathcal{P} . Let $X^* \subseteq \mathcal{P}$ be an optimal solution and t be the number of iterations executed by the algorithm until the first time at which $p \in X^*$ is considered but not added to the output solution, X, because of the violation of the knapsack constraint. We denote the number of elements added in the first t steps by d. If c(X + p) > L and $p \notin X^*$ occur in the

loops of the algorithm, then such p does not affect the analysis of approximation ratio. Therefore, we suppose that such p is removed from \mathcal{P} in advance. Considering the above, we can define a sequence p_1, p_2, \ldots so that p_i is the *i*-th element added to Xfor $i = 1, \ldots, d$ and p_{d+1} is the first element in X^* that is considered by the algorithm but not added to X due to the violation of the knapsack constraint. We define $X_i \coloneqq \{p_1, \ldots, p_i\}$ for $i = 1, \ldots, d + 1$ and $X_0 \coloneqq \emptyset$.

For given subset $Q = \{q_1, \ldots, q_K\} \subseteq \mathcal{P}$, path $\hat{q} \in Q$ is said to be *maximal* in Q if no $q \in Q$ satisfies $V_{\hat{q}} \subsetneq V_q$. A set of paths, $\hat{Q} \subseteq Q$, is a *maximal path cover* (MPC) of Q if all $\hat{q} \in \hat{Q}$ are maximal in Q and $V_{\hat{Q}} = V_Q$ holds. Since Q is defined on tree **T**, any $Q \subseteq \mathcal{P}$ has a unique MPC $\hat{Q} \subseteq \mathcal{P}$. Furthermore, for any $q \in Q$, there exists at least one $\hat{q} \in \hat{Q}$ satisfying $V_q \subseteq V_{\hat{q}}$.

Lemma 1. Given any $Z, Z^* \subseteq \mathcal{P}$, we define $\{q_1, \ldots, q_K\} \coloneqq Z^* - Z, Z_j \coloneqq Z + \{q_1, \ldots, q_j\}$ $(j \in [K])$ and $Z_0 \coloneqq Z$. Then the MPC $\{\hat{q}_1, \ldots, \hat{q}_M\}$ of $Z^* - Z$ satisfies

$$\sum_{j=1}^{K} f(q_j \mid Z_{j-1}) = \sum_{j=1}^{M} f(\hat{q}_j \mid \hat{Z}_{j-1}),$$

where
$$\hat{Z}_j \coloneqq Z + \{\hat{q}_1, \dots, \hat{q}_j\}$$
 and $\hat{Z}_0 \coloneqq Z$

Proof. Since $\{\hat{q}_1, \ldots, \hat{q}_M\}$ is the MPC of $Z^* - Z$, for any $q \in Z^* - Z$, there exists a $\hat{q} \in \{\hat{q}_1, \ldots, \hat{q}_M\}$ satisfying $V_q \subseteq V_{\hat{q}}$. Therefore, $Z^* - Z$ can be divided into M subsets $\{q_1^i, \ldots, q_{k_i}^i\}$ $(i \in [M])$ satisfying

$$V_{q_1^i} \subseteq \dots \subseteq V_{q_{k_i}^i} = V_{\hat{q}_i}.$$
 (A1)

Namely, $q_1^i, \ldots, q_{k_i}^i$ are subpaths of \hat{q}_i ; if some $q \in Q$ is included in multiple maximal paths, we arbitrarily choose one such maximal path to which q belongs. Thus all elements in $Z^* - Z$ are indexed as follows:

$$Z^* - Z$$

= { $q_1^1, \dots, q_{k_1}^1, q_1^2, \dots, q_{k_2}^2, \dots, q_1^M, \dots, q_{k_M}^M$ }.

We define $q_{j:k}^i \coloneqq \{q_j^i, q_{j+1}^i, \dots, q_k^i\}$ if $j \leq k$ and $q_{j:k}^i \coloneqq \emptyset$ otherwise. For any maximal path $\hat{q}_i \in \{\hat{q}_1, \dots, \hat{q}_M\}$ and any \hat{Z} such that $Z \subseteq \hat{Z} \subseteq Z^*$,

we have

$$\begin{split} f(\hat{q}_{i} \mid \hat{Z}) &= g(V_{\hat{Z}} \cup V_{\hat{q}_{i}}) - g(V_{\hat{Z}}) \\ &= g(V_{\hat{Z}} \cup V_{q_{k_{i}}^{i}}) - g(V_{\hat{Z}} \cup V_{q_{k_{i}-1}^{i}}) \\ &+ g(V_{\hat{Z}} \cup V_{q_{k_{i}-1}^{i}}) - g(V_{\hat{Z}} \cup V_{q_{k_{i}-2}^{i}}) \\ &+ \cdots \\ &+ g(V_{\hat{Z}} \cup V_{q_{1}^{i}}) - g(V_{\hat{Z}}) \\ &= g(V_{\hat{Z}} \cup V_{q_{1}^{i},k_{i}}) - g(V_{\hat{Z}} \cup V_{q_{1}^{i},k_{i}-1}) \\ &+ g(V_{\hat{Z}} \cup V_{q_{1}^{i},k_{i}-1}) - g(V_{\hat{Z}} \cup V_{q_{1}^{i},k_{i}-2}) \\ &+ \cdots \\ &+ g(V_{\hat{Z}} \cup V_{q_{1}^{i}}) - g(V_{\hat{Z}}) \\ &= f(q_{k_{i}}^{i} \mid \hat{Z} + q_{1:k_{i}-1}^{i}) + f(q_{k_{i}-1}^{i} \mid \hat{Z} + q_{1:k_{i}-2}^{i}) \\ &+ \cdots + f(q_{1}^{i} \mid \hat{Z}), \end{split}$$

where the third equality comes from (A1). Note that the value of $\sum_{j \in [K]} f(q_j \mid Z_{j-1}) = f(Z^*) - f(Z)$ is independent of the order of elements in $Z^* - Z$. Thus, rearranging the order of summation yields

$$\sum_{j=1}^{K} f(q_j \mid Z_{j-1}) = \sum_{i=1}^{M} \sum_{j=1}^{k_i} f(q_j^i \mid \hat{Z}_{i-1} + q_{1:j-1}^i)$$
$$= \sum_{j=1}^{M} f(\hat{q}_j \mid \hat{Z}_{j-1}).$$

For an optimal subtree $X^* \subseteq \mathcal{P}$ in T , we let
X_i^* denote a subtree of X^* that is included in the
<i>i</i> -th sentence tree T_i $(i \in [N])$. We define λ_i as the
number of leaves of T_i . Note that, if $Q_i \subseteq \mathcal{P}$ is
the MPC of X_i^* , then we have $ Q_i \leq \lambda_i$ (i.e., the
number of paths in MPC is bounded by the number
of leaves). Let $\lambda \coloneqq \max_{i \in [N]} \lambda_i$. Then we have
the following lemma.

Lemma 2. For i = 1, ..., d + 1, we have

$$f(X_i) - f(X_{i-1}) \\ \ge \frac{c(p_i \mid X_{i-1})}{\lambda L} (f(X^*) - f(X_{i-1})).$$

Proof. Let $\{q_1, ..., q_K\} := X^* - X_{i-1}, Z_j := X_{i-1} + \{q_1, ..., q_j\}$ and $Z_0 := X_{i-1}$. From Lemma 1 with $Z^* = X^*$ and $Z = X_{i-1}$, MPC

 $\hat{Q} = \{\hat{q}_1, \dots, \hat{q}_M\}$ of $X^* - X_{i-1}$ satisfies

$$f(X^*) - f(X_{i-1}) = \sum_{j=1}^{K} f(q_j \mid Z_{j-1})$$
$$= \sum_{j=1}^{M} f(\hat{q}_j \mid \hat{Z}_{j-1}),$$

where $\hat{Z}_j := X_{i-1} + {\hat{q}_1, \dots, \hat{q}_j}$ $(j \in [M])$ and $\hat{Z}_0 = X_{i-1}$. By using submodularity, we obtain

$$f(X^*) - f(X_{i-1}) = \sum_{j=1}^M f(\hat{q}_j \mid \hat{Z}_{j-1})$$

$$\leq \sum_{j=1}^M f(\hat{q}_j \mid \hat{Z}_0)$$

$$= \sum_{j=1}^M f(\hat{q}_j \mid X_{i-1}).$$

Since $p_i = \operatorname{argmax}_{p \notin X_{i-1}} \frac{f(p|X_{i-1})}{c(p|X_{i-1})}$ holds, we have $\frac{f(p_i|X_{i-1})}{c(p_i|X_{i-1})} \ge \frac{f(\hat{q}_j|X_{i-1})}{c(\hat{q}_j|X_{i-1})}$ for all $j = 1, \dots, M$. Hence we obtain

$$c(p_{i} \mid X_{i-1})(f(X^{*}) - f(X_{i-1})) \quad (A2)$$

$$\leq c(p_{i} \mid X_{i-1}) \sum_{j=1}^{M} f(\hat{q}_{j} \mid X_{i-1})$$

$$\leq f(p_{i} \mid X_{i-1}) \sum_{j=1}^{M} c(\hat{q}_{j} \mid X_{i-1}).$$

We now bound $\sum_{j=1}^{M} c(\hat{q}_j \mid X_{i-1})$ from above as follows. By using submodularity, we obtain

$$\sum_{j=1}^{M} c(\hat{q}_j \mid X_{i-1}) \le \sum_{j=1}^{M} c(\hat{q}_j).$$
 (A3)

Note that $\hat{Q} = {\hat{q}_1, \ldots, \hat{q}_M}$ can be partitioned into N subsets Q_1, \ldots, Q_N of maximal paths so that all $q \in Q_i$ include r_i ; we have $V_{Q_i} \cap V_{Q_j} = \emptyset$ for $i \neq j$ since each Q_i $(i \in [N])$ is defined on the *i*-th sentence tree, T_i . Using these definitions, we obtain

$$\sum_{j=1}^{M} c(\hat{q}_j) = \sum_{i \in [N]} \sum_{q \in Q_i} c(q) = \sum_{i \in [N]} \sum_{q \in Q_i} \sum_{v \in V_q} \ell_v.$$

Since we have $|Q_i| \leq \lambda_i$, each $v \in V_{Q_i}$ is included in at most λ_i maximal paths in Q_i . Thus we have

$$\sum_{q \in Q_i} \sum_{v \in V_q} \ell_v \leq \lambda_i \sum_{v \in V_{Q_i}} \ell_v \leq \lambda \sum_{v \in V_{Q_i}} \ell_v.$$

Furthermore, since $\hat{Q} = {\hat{q}_1, \dots, \hat{q}_M} \subseteq X^*$ satisfies the knapsack constraint, we have

$$\sum_{i \in [N]} \sum_{v \in V_{Q_i}} \ell_v = \sum_{v \in V_{\hat{Q}}} \ell_v = c(\{\hat{q}_1, \dots, \hat{q}_M\}) \le L.$$

From the above inequalities, we obtain

$$\sum_{j=1}^{M} c(\hat{q}_j) = \sum_{i \in [N]} \sum_{q \in Q_i} \sum_{v \in V_q} \ell_v \qquad (A4)$$
$$\leq \lambda \sum_{i \in [N]} \sum_{v \in V_{Q_i}} \ell_v \leq \lambda L.$$

Combining (A2), (A3) and (A4), we obtain

$$c(p_i \mid X_{i-1})(f(X^*) - f(X_{i-1}))$$

 $\leq f(p_i \mid X_{i-1})\lambda L.$

The claim follows by rearranging terms and using $f(p_i \mid X_{i-1}) = f(X_i) - f(X_{i-1})$. \Box

Lemma 3. For i = 1, ..., d + 1, we have

$$f(X_i) \ge \left(1 - \prod_{k=1}^i \left(1 - \frac{c(p_k \mid X_{k-1})}{\lambda L}\right)\right) f(X^*).$$

Proof. We prove the lemma by induction on i = 1, ..., d + 1. First, if i = 1, we have $X_1 = \{p_1\}$ and thus the claim follows by Lemma 2. Then we assume the lemma holds for $X_1, ..., X_{i-1}$ and prove that it holds for X_i . Combining Lemma 2 and the assumption, we obtain

$$f(X_{i}) = f(X_{i-1}) + (f(X_{i}) - f(X_{i-1}))$$

$$\geq f(X_{i-1}) + \frac{c(p_{i} \mid X_{i-1})}{\lambda L} (f(X^{*}) - f(X_{i-1}))$$

$$= \left(1 - \frac{c(p_{i} \mid X_{i-1})}{\lambda L}\right) f(X_{i-1})$$

$$+ \frac{c(p_{i} \mid X_{i-1})}{\lambda L} f(X^{*})$$

$$\geq \left(1 - \prod_{k=1}^{i} \left(1 - \frac{c(p_{k} \mid X_{k-1})}{\lambda L}\right)\right) f(X^{*}).$$

Thus the lemma holds by induction. \Box

Theorem 1. Algorithm 1 achieves at least $\frac{1}{2}(1 - e^{-1/\lambda})$ -approximation.

Proof. Since $\sum_{k=1}^{d+1} \frac{c(p_k|X_{k-1})}{c(X_{d+1})} = 1$ holds, $\prod_{k=1}^{d+1} \left(1 - \frac{1}{\lambda} \cdot \frac{c(p_k|X_{k-1})}{c(X_{d+1})}\right)$ attains its maximum when we have $\frac{c(p_1|X_0)}{c(X_{d+1})} = \cdots = \frac{c(p_{d+1}|X_d)}{c(X_{d+1})} = \frac{1}{d+1}$. Namely, the following inequality holds:

$$\prod_{k=1}^{d+1} \left(1 - \frac{1}{\lambda} \cdot \frac{c(p_k \mid X_{k-1})}{c(X_{d+1})} \right)$$
$$\leq \left(1 - \frac{1}{\lambda} \cdot \frac{1}{d+1} \right)^{d+1}.$$

By using Lemma 3, the above inequality, and the fact that the knapsack constraint is violated by adding (d + 1)-th element (i.e., $c(X_{d+1}) > L$), we obtain

$$f(X_{d+1})$$

$$\geq \left(1 - \prod_{k=1}^{d+1} \left(1 - \frac{c(p_k \mid X_{k-1})}{\lambda L}\right)\right) f(X^*)$$

$$\geq \left(1 - \prod_{k=1}^{d+1} \left(1 - \frac{1}{\lambda} \cdot \frac{c(p_k \mid X_{k-1})}{c(X_{d+1})}\right)\right) f(X^*)$$

$$\geq \left(1 - \left(1 - \frac{1}{\lambda} \cdot \frac{1}{d+1}\right)^{d+1}\right) f(X^*)$$

$$\geq \left(1 - \frac{1}{e^{1/\lambda}}\right) f(X^*).$$

This leads to the following inequality:

$$f(X_{d+1}) = f(X_d) + f(p_{d+1} \mid X_d)$$

$$\geq (1 - e^{-1/\lambda}) f(X^*).$$

We note that the solution, X, obtained by Steps 1–8 in Algorithm 1 satisfies $f(X) \ge f(X_d)$ and that \hat{p} chosen in Step 9 satisfies $f(\hat{p}) \ge f(p_{d+1} \mid X_d)$. Therefore, the output of Algorithm 1, which is defined as $Y \coloneqq \operatorname{argmax}_{X' \in \{X, \hat{p}\}} f(X')$, satisfies $f(Y) \ge \frac{1}{2}(1 - e^{-1/\lambda})f(X^*)$. \Box

C ILP formulations

We present ILP formulations for the three objective functions described in Section 5. In the experiments, the ILP-based method obtained summaries by solving the following optimization problems.

Coverage Function

The ILP formulation with the coverage function can be written as follows:

$$\underset{z,b}{\text{maximize}} \quad \sum_{j=1}^{M} w_j z_j \tag{A5}$$

subject to
$$\sum_{v \in V} \ell_v b_v \le L$$
, (A6)

$$\forall v \in V \setminus r_{1:N} : \quad b_{\text{parent}(v)} \ge b_v, \quad \text{(A7)} \\ \forall j \in [M] : \quad \sum_{v \in V_i} b_v \ge z_j, \quad \text{(A8)}$$

$$\forall v \in V : \quad b_v \in \{0, 1\},$$

$$\forall j \in [M] : \quad z_j \in \{0, 1\}.$$

 z_j is a binary decision variable that indicates whether the *j*-th word is contained in the summary or not. b_v is a binary decision variable that represents whether chunk $v \in V$ is contained in the summary or not.

Constraint (A6) guarantees that the obtained summary includes at most L words. Remember that $r_i \in V$ ($i \in [N]$) is the root node of dependency tree T_i constructed for the *i*-th sentence; we use $r_{1:N}$ as shorthand for $\{r_1, \ldots, r_N\}$. Function parent(v) returns the parent chunk of $v \in V$ in the dependency trees. Therefore, constraint (A7) guarantees that the obtained summary comprises some rooted subtrees of the dependency trees. $V_j \subseteq V$ denotes the set of all chunks that include the *j*-th word. Thus, constraint (A8) means that at least one chunk including the *j*-th word must be chosen in order to cover the *j*-th word.

Coverage Function with Rewords

The ILP formulation for this objective function can be obtained by replacing the objective function in (A5) with

$$\sum_{j=1}^{M} w_j z_j - \gamma \left(\sum_{v \in V} \ell_v b_v - \sum_{i=1}^{N} b_{r_i} \right)$$

where γ is a hyper parameter that balances the total weight of covered chunks and the positive reword term.

$ROUGE_1$

As in (Hirao et al., 2017), compressive summarization with the $ROUGE_1$ objective function can be formulated as the following ILP:

$$\begin{array}{ll} \underset{z,b}{\operatorname{maximize}} & \sum_{k=1}^{K} \sum_{j=1}^{M} z_{k,j} \\ \text{subject to} & \sum_{v \in V} \ell_v b_v \leq L, \\ \forall k \in [K], j \in [M] : & \operatorname{C}_{e_j}(R_k) \geq z_{k,j}, \text{(A9)} \\ \forall k \in [K], j \in [M] : & \sum_{v \in V_j} b_v \geq z_{k,j}, \text{(A10)} \\ \forall v \in V \setminus r_{1:N} : & b_{\operatorname{parent}(v)} \geq b_v, \\ \forall v \in V : & b_v \in \{0, 1\}, \\ \forall k \in [K], j \in [M] : & z_{k,j} \in \mathbb{Z}_{\geq 0}. \end{array}$$

We here suppose that the document data contains M distinct unigrams indexed with $j \in [M]$; e_j denotes the *j*-th unigram, and $V_j \subseteq V$ is the set of all chunks that include e_j . Each non-negative integer variable $z_{k,j}$ counts the number of times that e_j appears both in the *k*-th reference summary and in the summary to be output, which we denote by $S \subseteq V$. From constraints (A9), (A10), and $\sum_{v \in V_j} b_v = C_{e_j}(S)$, we see that the objective function corresponds to the numerator of ROUGE (3) with n = 1. The remaining parts are similar to those in the ILP formulation for the coverage function.

References

- Tsutomu Hirao, Masaaki Nishino, and Masaaki Nagata. 2017. Oracle summaries of compressive summarization. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*. Association for Computational Linguistics, pages 275–280. https://doi.org/10.18653/v1/P17-2043.
- Samir Khuller, Anna Moss, and Joseph S. Naor. 1999. The budgeted maximum coverage problem. *Information Processing Letters* 70(1):39–45. https://doi.org/10.1016/S0020-0190(99)00031-9.
- Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject to a knapsack constraint. *Operations Research Letters* 32(1):41–43. https://doi.org/10.1016/S0167-6377(03)00062-2.