
Appendices

A Submodularity of f and c

Remember that f and c are defined on P as

f(X) := g(VX), c(X) :=
∑
v∈VX

`v,

where VX :=
⋃
p∈X Vp; Vp ⊆ V is a vertex subset

that is included in path p ∈ P .
We first see that f is a submodular function. Let

X ⊆ Y and p /∈ Y , then f satisfies the diminishing
return property as follows:

f(p | X) = g(Vp | VX)
≥ g(Vp | VY )
= f(p | VY ),

where the inequality comes from VX ⊆ VY and
the submodularity of g; it may occur that Vp is
included in VY (and VX ), but in such a case we
have f(p | Y ) = 0 (and f(p | X) = 0), which
does not affect the conclusion. The monotonicity
of f is confirmed readily from the monotonicity of
g, and f(∅) = 0 comes from g(∅) = 0.

We then see that c is a submodular function. For
X ⊆ Y and p /∈ Y , the diminishing return property
holds as follows:

c(p | X) =
∑

v∈Vp\VX

`v

≥
∑

v∈Vp\VY

`v

= c(p | Y ),

where we use Vp\VY ⊆ Vp\VX and `v ≥ 0 (v ∈
V ). Similar to the above, Vp ⊆ VY (and Vp ⊆ VX )
does not affect the conclusion. The monotonicity
of c and c(∅) = 0 are also easily obtained.

B Proof of Theorem 1

As is customary in the analysis of greedy algo-
rithms for submodular knapsack problems (Khuller
et al., 1999; Sviridenko, 2004), we introduce the
following indexing of selected elements in P . Let
X∗ ⊆ P be an optimal solution and t be the num-
ber of iterations executed by the algorithm until
the first time at which p ∈ X∗ is considered but
not added to the output solution, X , because of the
violation of the knapsack constraint. We denote
the number of elements added in the first t steps
by d. If c(X + p) > L and p /∈ X∗ occur in the

loops of the algorithm, then such p does not affect
the analysis of approximation ratio. Therefore, we
suppose that such p is removed from P in advance.
Considering the above, we can define a sequence
p1, p2, . . . so that pi is the i-th element added to X
for i = 1, . . . , d and pd+1 is the first element inX∗

that is considered by the algorithm but not added to
X due to the violation of the knapsack constraint.
We define Xi := {p1, . . . , pi} for i = 1, . . . , d+ 1
and X0 := ∅.

For given subset Q = {q1, . . . , qK} ⊆ P , path
q̂ ∈ Q is said to be maximal in Q if no q ∈ Q
satisfies Vq̂ ( Vq. A set of paths, Q̂ ⊆ Q, is a
maximal path cover (MPC) of Q if all q̂ ∈ Q̂ are
maximal in Q and VQ̂ = VQ holds. Since Q is
defined on tree T, any Q ⊆ P has a unique MPC
Q̂ ⊆ P . Furthermore, for any q ∈ Q, there exists
at least one q̂ ∈ Q̂ satisfying Vq ⊆ Vq̂.

Lemma 1. Given any Z,Z∗ ⊆ P , we define
{q1, . . . , qK} := Z∗ − Z, Zj := Z + {q1, . . . , qj}
(j ∈ [K]) and Z0 := Z. Then the MPC
{q̂1, . . . , q̂M} of Z∗ − Z satisfies

K∑
j=1

f(qj | Zj−1) =
M∑
j=1

f(q̂j | Ẑj−1),

where Ẑj := Z + {q̂1, . . . , q̂j} and Ẑ0 := Z.

Proof. Since {q̂1, . . . , q̂M} is the MPC of Z∗ −
Z, for any q ∈ Z∗ − Z, there exists a q̂ ∈
{q̂1, . . . , q̂M} satisfying Vq ⊆ Vq̂. Therefore,
Z∗−Z can be divided intoM subsets {qi1, . . . , qiki

}
(i ∈ [M ]) satisfying

Vqi
1
⊆ · · · ⊆ Vqi

ki

= Vq̂i . (A1)

Namely, qi1, . . . , q
i
ki

are subpaths of q̂i; if some
q ∈ Q is included in multiple maximal paths, we
arbitrarily choose one such maximal path to which
q belongs. Thus all elements in Z∗−Z are indexed
as follows:

Z∗ − Z
= {q1

1, . . . , q
1
k1 , q

2
1, . . . , q

2
k2 , . . . , q

M
1 , . . . , qMkM

}.

We define qij:k := {qij , qij+1, . . . , q
i
k} if j ≤ k and

qij:k := ∅ otherwise. For any maximal path q̂i ∈
{q̂1, . . . , q̂M} and any Ẑ such that Z ⊆ Ẑ ⊆ Z∗,



we have

f(q̂i | Ẑ)
= g(VẐ ∪ Vq̂i)− g(VẐ)
= g(VẐ ∪ Vqi

ki

)− g(VẐ ∪ Vqi
ki−1

)

+ g(VẐ ∪ Vqi
ki−1

)− g(VẐ ∪ Vqi
ki−2

)

+ · · ·
+ g(VẐ ∪ Vqi

1
)− g(VẐ)

= g(VẐ ∪ Vqi
1:ki

)− g(VẐ ∪ Vqi
1:ki−1

)

+ g(VẐ ∪ Vqi
1:ki−1

)− g(VẐ ∪ Vqi
1:ki−2

)

+ · · ·
+ g(VẐ ∪ Vqi

1
)− g(VẐ)

= f(qiki
| Ẑ + qi1:ki−1) + f(qiki−1 | Ẑ + qi1:ki−2)

+ · · ·+ f(qi1 | Ẑ),

where the third equality comes from (A1). Note
that the value of

∑
j∈[K] f(qj | Zj−1) = f(Z∗)−

f(Z) is independent of the order of elements in
Z∗−Z. Thus, rearranging the order of summation
yields

K∑
j=1

f(qj | Zj−1) =
M∑
i=1

ki∑
j=1

f(qij | Ẑi−1 + qi1:j−1)

=
M∑
j=1

f(q̂j | Ẑj−1).

For an optimal subtree X∗ ⊆ P in T, we let
X∗i denote a subtree of X∗ that is included in the
i-th sentence tree Ti (i ∈ [N ]). We define λi as the
number of leaves of Ti. Note that, if Qi ⊆ P is
the MPC of X∗i , then we have |Qi| ≤ λi (i.e., the
number of paths in MPC is bounded by the number
of leaves). Let λ := maxi∈[N ] λi. Then we have
the following lemma.

Lemma 2. For i = 1, . . . , d+ 1, we have

f(Xi)− f(Xi−1)

≥ c(pi | Xi−1)
λL

(f(X∗)− f(Xi−1)).

Proof. Let {q1, . . . , qK} := X∗ − Xi−1, Zj :=
Xi−1 + {q1, . . . , qj} and Z0 := Xi−1. From
Lemma 1 with Z∗ = X∗ and Z = Xi−1, MPC

Q̂ = {q̂1, . . . , q̂M} of X∗ −Xi−1 satisfies

f(X∗)− f(Xi−1) =
K∑
j=1

f(qj | Zj−1)

=
M∑
j=1

f(q̂j | Ẑj−1),

where Ẑj := Xi−1 + {q̂1, . . . , q̂j} (j ∈ [M ]) and
Ẑ0 = Xi−1. By using submodularity, we obtain

f(X∗)− f(Xi−1) =
M∑
j=1

f(q̂j | Ẑj−1)

≤
M∑
j=1

f(q̂j | Ẑ0)

=
M∑
j=1

f(q̂j | Xi−1).

Since pi = argmaxp/∈Xi−1
f(p|Xi−1)
c(p|Xi−1) holds, we

have f(pi|Xi−1)
c(pi|Xi−1) ≥

f(q̂j |Xi−1)
c(q̂j |Xi−1) for all j = 1, . . . ,M .

Hence we obtain

c(pi | Xi−1)(f(X∗)− f(Xi−1)) (A2)

≤ c(pi | Xi−1)
M∑
j=1

f(q̂j | Xi−1)

≤ f(pi | Xi−1)
M∑
j=1

c(q̂j | Xi−1).

We now bound
∑M
j=1 c(q̂j | Xi−1) from above as

follows. By using submodularity, we obtain

M∑
j=1

c(q̂j | Xi−1) ≤
M∑
j=1

c(q̂j). (A3)

Note that Q̂ = {q̂1, . . . , q̂M} can be partitioned
into N subsets Q1, . . . , QN of maximal paths so
that all q ∈ Qi include ri; we have VQi ∩ VQj = ∅
for i 6= j since each Qi (i ∈ [N ]) is defined on the
i-th sentence tree, Ti. Using these definitions, we
obtain

M∑
j=1

c(q̂j) =
∑
i∈[N ]

∑
q∈Qi

c(q) =
∑
i∈[N ]

∑
q∈Qi

∑
v∈Vq

`v.

Since we have |Qi| ≤ λi, each v ∈ VQi is included
in at most λi maximal paths in Qi. Thus we have∑

q∈Qi

∑
v∈Vq

`v ≤ λi
∑
v∈VQi

`v ≤ λ
∑
v∈VQi

`v.



Furthermore, since Q̂ = {q̂1, . . . , q̂M} ⊆ X∗ satis-
fies the knapsack constraint, we have∑
i∈[N ]

∑
v∈VQi

`v =
∑
v∈VQ̂

`v = c({q̂1, . . . , q̂M}) ≤ L.

From the above inequalities, we obtain

M∑
j=1

c(q̂j) =
∑
i∈[N ]

∑
q∈Qi

∑
v∈Vq

`v (A4)

≤ λ
∑
i∈[N ]

∑
v∈VQi

`v ≤ λL.

Combining (A2), (A3) and (A4), we obtain

c(pi | Xi−1)(f(X∗)− f(Xi−1))
≤ f(pi | Xi−1)λL.

The claim follows by rearranging terms and using
f(pi | Xi−1) = f(Xi)− f(Xi−1).

Lemma 3. For i = 1, . . . , d+ 1, we have

f(Xi)

≥
(

1−
i∏

k=1

(
1− c(pk | Xk−1)

λL

))
f(X∗).

Proof. We prove the lemma by induction on i =
1, . . . , d + 1. First, if i = 1, we have X1 = {p1}
and thus the claim follows by Lemma 2. Then
we assume the lemma holds for X1, . . . , Xi−1 and
prove that it holds for Xi. Combining Lemma 2
and the assumption, we obtain

f(Xi)
= f(Xi−1) + (f(Xi)− f(Xi−1))

≥ f(Xi−1) + c(pi | Xi−1)
λL

(f(X∗)− f(Xi−1))

=
(

1− c(pi | Xi−1)
λL

)
f(Xi−1)

+ c(pi | Xi−1)
λL

f(X∗)

≥
(

1−
i∏

k=1

(
1− c(pk | Xk−1)

λL

))
f(X∗).

Thus the lemma holds by induction.

Theorem 1. Algorithm 1 achieves at least 1
2(1 −

e−1/λ)-approximation.

Proof. Since
∑d+1
k=1

c(pk|Xk−1)
c(Xd+1) = 1 holds,∏d+1

k=1

(
1− 1

λ ·
c(pk|Xk−1)
c(Xd+1)

)
attains its maximum

when we have c(p1|X0)
c(Xd+1) = · · · = c(pd+1|Xd)

c(Xd+1) = 1
d+1 .

Namely, the following inequality holds:

d+1∏
k=1

(
1− 1

λ
· c(pk | Xk−1)

c(Xd+1)

)

≤
(

1− 1
λ
· 1
d+ 1

)d+1
.

By using Lemma 3, the above inequality, and the
fact that the knapsack constraint is violated by
adding (d + 1)-th element (i.e., c(Xd+1) > L),
we obtain

f(Xd+1)

≥
(

1−
d+1∏
k=1

(
1− c(pk | Xk−1)

λL

))
f(X∗)

≥
(

1−
d+1∏
k=1

(
1− 1

λ
· c(pk | Xk−1)

c(Xd+1)

))
f(X∗)

≥
(

1−
(

1− 1
λ
· 1
d+ 1

)d+1
)
f(X∗)

≥
(

1− 1
e1/λ

)
f(X∗).

This leads to the following inequality:

f(Xd+1) = f(Xd) + f(pd+1 | Xd)
≥ (1− e−1/λ)f(X∗).

We note that the solution,X , obtained by Steps 1–8
in Algorithm 1 satisfies f(X) ≥ f(Xd) and that
p̂ chosen in Step 9 satisfies f(p̂) ≥ f(pd+1 | Xd).
Therefore, the output of Algorithm 1, which is
defined as Y := argmaxX′∈{X,p̂} f(X ′), satisfies
f(Y ) ≥ 1

2(1− e−1/λ)f(X∗).

C ILP formulations

We present ILP formulations for the three objective
functions described in Section 5. In the experi-
ments, the ILP-based method obtained summaries
by solving the following optimization problems.



Coverage Function

The ILP formulation with the coverage function
can be written as follows:

maximize
z,b

M∑
j=1

wjzj (A5)

subject to
∑
v∈V

`vbv ≤ L, (A6)

∀v ∈ V \r1:N : bparent(v) ≥ bv, (A7)

∀j ∈ [M ] :
∑
v∈Vj

bv ≥ zj , (A8)

∀v ∈ V : bv ∈ {0, 1},
∀j ∈ [M ] : zj ∈ {0, 1}.

zj is a binary decision variable that indicates
whether the j-th word is contained in the summary
or not. bv is a binary decision variable that rep-
resents whether chunk v ∈ V is contained in the
summary or not.

Constraint (A6) guarantees that the obtained
summary includes at most L words. Remember
that ri ∈ V (i ∈ [N ]) is the root node of depen-
dency tree Ti constructed for the i-th sentence; we
use r1:N as shorthand for {r1, . . . , rN}. Function
parent(v) returns the parent chunk of v ∈ V in the
dependency trees. Therefore, constraint (A7) guar-
antees that the obtained summary comprises some
rooted subtrees of the dependency trees. Vj ⊆ V
denotes the set of all chunks that include the j-th
word. Thus, constraint (A8) means that at least one
chunk including the j-th word must be chosen in
order to cover the j-th word.

Coverage Function with Rewords

The ILP formulation for this objective function
can be obtained by replacing the objective function
in (A5) with

M∑
j=1

wjzj − γ
(∑
v∈V

`vbv −
N∑
i=1

bri

)
,

where γ is a hyper parameter that balances the total
weight of covered chunks and the positive reword
term.

ROUGE1

As in (Hirao et al., 2017), compressive summariza-
tion with the ROUGE1 objective function can be

formulated as the following ILP:

maximize
z,b

K∑
k=1

M∑
j=1

zk,j

subject to
∑
v∈V

`vbv ≤ L,

∀k ∈ [K], j ∈ [M ] : Cej (Rk) ≥ zk,j , (A9)

∀k ∈ [K], j ∈ [M ] :
∑
v∈Vj

bv ≥ zk,j , (A10)

∀v ∈ V \r1:N : bparent(v) ≥ bv,
∀v ∈ V : bv ∈ {0, 1},

∀k ∈ [K], j ∈ [M ] : zk,j ∈ Z≥0.

We here suppose that the document data con-
tains M distinct unigrams indexed with j ∈ [M ];
ej denotes the j-th unigram, and Vj ⊆ V is the set
of all chunks that include ej . Each non-negative
integer variable zk,j counts the number of times
that ej appears both in the k-th reference summary
and in the summary to be output, which we de-
note by S ⊆ V . From constraints (A9), (A10), and∑
v∈Vj

bv = Cej (S), we see that the objective func-
tion corresponds to the numerator of ROUGE (3)
with n = 1. The remaining parts are similar to
those in the ILP formulation for the coverage func-
tion.

References
Tsutomu Hirao, Masaaki Nishino, and Masaaki Na-

gata. 2017. Oracle summaries of compressive
summarization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 275–280.
https://doi.org/10.18653/v1/P17-2043.

Samir Khuller, Anna Moss, and Joseph S. Naor.
1999. The budgeted maximum coverage prob-
lem. Information Processing Letters 70(1):39–45.
https://doi.org/10.1016/S0020-0190(99)00031-9.

Maxim Sviridenko. 2004. A note on maximizing a
submodular set function subject to a knapsack con-
straint. Operations Research Letters 32(1):41–43.
https://doi.org/10.1016/S0167-6377(03)00062-2.

https://doi.org/10.18653/v1/P17-2043
https://doi.org/10.18653/v1/P17-2043
https://doi.org/10.18653/v1/P17-2043
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2

