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In the supplementary material, we show our ex-
perimental details in Section 6, qualitative analysis
in Section 7, the experiment for choosing repre-
sentative scoring functions in Section 8, the per-
formance comparison with previously reported re-
sults in Section 9, the experiment of hypernym
direction detection in Section 10, the results of
DIVE/SBOW trained on PubMed in Section 11,
and an efficient way to computing AL1 scoring
function in Section 12.

6 Experimental details

When performing the hypernym detection task,
each paper uses different training and testing set-
tings, and we are not aware of a standard setup in
this field. For the setting which affects the per-
formance significantly, we try to find possible ex-
planations. For all the settings we tried, we do
not find a setting choice which favors a particular
embedding/feature space, and all methods use the
same training and testing setup in our experiments.

6.1 Training details
We use WaCkypedia corpus (Baroni et al., 2009),
a 2009 Wikipedia dump, to compute SBOW and
train the embedding. For the datasets without
Part of Speech (POS) information (i.e. Medical,
LEDS, TM14, Kotlerman 2010, and HyperNet),
the training data of SBOW and embeddings are
raw text. For other datasets, we concatenate each
token with the Part of Speech (POS) of the token
before training the models except the case when
we need to match the training setup of another pa-
per. All part-of-speech (POS) tags in the experi-
ments come from NLTK.

All words are lower cased. Stop words and rare
words (occurs less than 10 times) are removed dur-
ing our preprocessing step. To train embeddings
more efficiently, we chunk the corpus into sub-
sets/lines of 100 tokens instead of using sentence

BLESS EVALution Lenci/Benotto Weeds Avg (4 datasets)
N OOV N OOV N OOV N OOV N OOV

26554 1507 13675 2475 5010 1464 2928 643 48167 6089
Medical LEDS TM14 Kotlerman 2010 HyperNet

N OOV N OOV N OOV N OOV N OOV
12602 3711 2770 28 2188 178 2940 89 17670 9424

WordNet Avg (10 datasets) HyperLex
N OOV N OOV N OOV

8000 3596 94337 24110 2616 59

Table 5: Dataset sizes. N denotes the number of word
pairs in the dataset, and OOV shows how many word
pairs are not processed by all the methods in Table 2
and Table 3.

segmentation. Preliminary experiments show that
this implementation simplification does not hurt
the performance.

We train DIVE, SBOW, Gaussian embedding,
and Word2Vec on only the first 512,000 lines
(51.2 million tokens)1 because we find this way
of training setting provides better performances
(for both SBOW and DIVE) than training on the
whole WaCkypedia or training on randomly sam-
pled 512,000 lines. We suspect this is due to
the corpus being sorted by the Wikipedia page ti-
tles, which makes some categorical words such
as animal and mammal occur 3-4 times more fre-
quently in the first 51.2 million tokens than the
rest. The performances of training SBOW PPMI
on the whole WaCkypedia is also provided for ref-
erence in Table 2 and Table 3. To demonstrate that
the quality of DIVE is not very sensitive to the
training corpus, we also train DIVE and SBOW
PPMI on PubMed and compare the performance
of DIVE and SBOW PPMI on Medical dataset in
Section 11.

1At the beginning, we train the model on this subset just
to get the results faster. Later on, we find that in this sub-
set of corpus, the context distribution of the words in testing
datasets satisfy the DIH assumption better, so we choose to
do all the comparison based on the subset.



Figure 2: Visualization of the DIVE embedding of word pairs with hypernym relation. The pairs include (re-
volver,pistol), (pistol,weapon), (cannon,weapon), (artillery,cannon), (ant,insect), (insect,animal), (mammal,animal),
and (insect,invertebrate).

6.2 Testing details

The number of testing pairs N and the number
of OOV word pairs is presented in Table 5. The
micro-average AP is computed by the AP of every
dataset weighted by its number of testing pairs N.

In HyperNet and WordNet, some hypernym re-

lations are annotated between phrases instead of
words. Phrase embeddings are composed by av-
eraging embeddings (DIVE and skip-grams), or
SBOW features of each word. For WordNet, we
assume the Part of Speech (POS) tags of the words
are the same as the phrase. For Gaussian embed-



Figure 3: Visualization of the DIVE embedding of oil, core, and their hyponyms.

ding, we use the average score of every pair of
words in two phrases when determining the score
between two phrases.

6.3 Hyper-parameters
For DIVE, the number of epochs is 15, the learn-
ing rate is 0.001, the batch size is 128, the thresh-
old in PMI filter kf is set to be 30, and the ra-
tio between negative and positive samples (kI ) is
1.5. The hyper-parameters of DIVE were decided

based on the performance of HyperNet training
set. The window size of skip-grams (Word2Vec) is
10. The number of negative samples (k′) in skip-
gram is set as 5.

For Gaussian embedding (GE), the number of
mixtures is 1, the number of dimensions is 100,
the learning rate is 0.01, the lowest variance is
0.1, the highest variance is 100, the highest Gaus-
sian mean is 10, and other hyper-parameters are



the default value in https://github.com/
benathi/word2gm. The hyper-parameters of
GE were also decided based on the performance
of HyperNet training set. We also tried to directly
tune the hyper-parameters on the micro-average
performances of all datasets we are using (except
HyperLex), but we found that the performances on
most of the datasets are not significantly different
from the one tuned by HyperNet.

6.4 Kmeans as NMF

For our K-means (Freq NMF) baseline, K-means
hashing creates a |V | × 100 matrix G with or-
thonormal rows (GTG = I), where |V | is the
size of vocabulary, and the (i, k)th element is 0
if the word i does not belong to cluster k. Let
the |V |× |V | context frequency matrix be denoted
as Mc, where the (i, j)th element stores the count
of word j appearing beside word i. The G cre-
ated by K-means is also a solution of a type of
NMF, where Mc ≈ FGT and G is constrained
to be orthonormal (Ding et al., 2005). Hashing
context vectors into topic vectors can be written as
McG ≈ FGTG = F .

7 Qualitative analysis

To understand how DIVE preserves DIH more in-
tuitively, we visualize the embedding of several
hypernym pairs. In Figure 2, we compare DIVE
of different weapons and animals where the di-
mensions with the embedding value less than 0.1
are removed. We can see that hypernyms of-
ten have extra attributes/dimensions that their hy-
ponyms lack. For example, revolver do not appears
in the military context as often as pistol do and an
ant usually does not cause diseases. We can also
tell that cannon and pistol do not have hypernym re-
lation because cannon appears more often in mili-
tary contexts than pistol.

In DIVE, the signal comes from the count of
co-occurring context words. Based on DIH, we
can know a terminology to be general only when
it appears in diverse contexts many times. In Fig-
ure 2, we illustrate the limitation of DIH by show-
ing the DIVE of two relatively rare terminologies:
artillery and invertebrate. There are other reasons
that could invalid DIH. An example is that a spe-
cific term could appear in a special context more
often than its hypernym (Shwartz et al., 2017). For
instance, gasoline co-occurs with words related to
cars more often than oil in Figure 3, and similarly

for wax in contexts related to legs or foots. An-
other typical DIH violation is caused by multiple
senses of words. For example, nucleus is the ter-
minology for the core of atoms, cells, comets, and
syllables. DIH is satisfied in some senses (e.g. the
core of atoms) while not in other senses (the core
of cells).

8 Hypernymy scoring functions analysis

Different scoring functions measure different sig-
nals in SBOW or embeddings. Since there are
so many scoring functions and datasets available
in the domain, we introduce and test the perfor-
mances of various scoring functions so as to select
the representative ones for a more comprehensive
evaluation of DIVE on the hypernymy detection
tasks. We denote the embedding/context vector of
the hypernym candidate and the hyponym candi-
date as wp and wq, respectively.

8.1 Unsupervised scoring functions

Similarity
A hypernym tends to be similar to its hyponym,

so we measure the cosine similarity between word
vectors of the SBOW features (Levy et al., 2015)
or DIVE. We refer to the symmetric scoring func-
tion as Cosine or C for short in the following ta-
bles. We also train the original skip-grams with
100 dimensions and measure the cosine similar-
ity between the resulting Word2Vec embeddings.
This scoring function is referred to as Word2Vec
or W.
Generality

The distributional informativeness hypothe-
sis (Santus et al., 2014) observes that in many
corpora, semantically ‘general’ words tend to ap-
pear more frequently and in more varied contexts.
Thus, Santus et al. (2014) advocate using entropy
of context distributions to capture the diversity of
context. We adopt the two variations of the ap-
proach proposed by Shwartz et al. (2017): SLQS
Row and SLQS Sub functions. We also refer to
SLQS Row as ∆E because it measures the entropy
difference of context distributions. For SLQS Sub,
the number of top context words is fixed as 100.

Although effective at measuring diversity, the
entropy totally ignores the frequency signal from
the corpus. To leverage the information, we mea-
sure the generality of a word by its L1 norm
(||wp||1) and L2 norm (||wp||2). Recall that Equa-
tion 2 indicates that the embedding of the hyper-

https://github.com/benathi/word2gm
https://github.com/benathi/word2gm


Word2Vec (W) Cosine (C) SLQS Sub SLQS Row (∆E) Summation (∆S) Two norm (∆Q)
24.8 26.7 27.4 27.6 31.5 31.2

W·∆E C·∆E W·∆S C·∆S W·∆Q C·∆Q
28.8 29.5 31.6 31.2 31.4 31.1

Weeds CDE invCL Asymmetric L1 (AL1)
19.0 31.1 30.7 28.2

Table 6: Micro average AP@all (%) of 10 datasets using different scoring functions. The feature space is SBOW
using word frequency.

dq

a*dq

dp

a*dq-dp

dp-a*dq

Figure 4: An example ofAL1 distance. If the word pair
indeed has the hypernym relation, the context distribu-
tion of hyponym (dq) tends to be included in the con-
text distribution of hypernym (dp) after proper scaling
according to DIH. Thus, the context words only appear
beside the hyponym candidate (adq[c] − dp[c]) causes
higher penalty (weighted by w0).

nym y should have a larger value at every dimen-
sion than the embedding of the hyponym x. When
the inclusion property holds, ||y||1 =

∑
i y[i] ≥∑

i x[i] = ||x||1 and similarly ||y||2 ≥ ||x||2.
Thus, we propose two scoring functions, differ-
ence of vector summation (||wp||1 − ||wq||1) and
the difference of vector 2-norm (||wp||2−||wq||2).
Notice that when applying the difference of vec-
tor summations (denoted as ∆S) to SBOW Freq,
it is equivalent to computing the word frequency
difference between the hypernym candidate pair.
Similarity plus generality

The combination of 2 similarity functions (Co-
sine and Word2Vec) and the 3 generality functions
(difference of entropy, summation, and 2-norm of
vectors) leads to six different scoring functions as
shown in Table 6, and C·∆S is the same scor-
ing function we used in Experiment 1. It should
be noted that if we use skip-grams with negative
sampling (Word2Vec) as the similarity measure-
ment (i.e., W · ∆ {E,S,Q}), the scores are deter-
mined by two embedding/feature spaces together
(Word2Vec and DIVE/SBOW).

Inclusion

Several scoring functions are proposed to mea-
sure inclusion properties of SBOW based on DIH.
Weeds Precision (Weeds and Weir, 2003) and
CDE (Clarke, 2009) both measure the magnitude
of the intersection between feature vectors (||wp ∩
wq||1). For example, wp ∩ wq is defined by the
element-wise minimum in CDE. Then, both scor-
ing functions divide the intersection by the mag-
nitude of the potential hyponym vector (||wq||1).
invCL (Lenci and Benotto, 2012) (A variant of
CDE) is also tested.

We choose these 3 functions because they have
been shown to detect hypernymy well in a recent
study (Shwartz et al., 2017). However, it is hard to
confirm that their good performances come from
the inclusion property between context distribu-
tions — it is also possible that the context vec-
tors of more general words have higher chance to
overlap with all other words due to their high fre-
quency. For instance, considering a one dimension
feature which stores only the frequency of words,
the naive embedding could still have reasonable
performance on the CDE function, but the em-
bedding in fact only memorizes the general words
without modeling relations between words (Levy
et al., 2015) and loses lots of inclusion signals in
the word co-occurrence statistics.

In order to measure the inclusion property with-
out the interference of the word frequency signal
from the SBOW or embeddings, we propose a new
measurement called asymmetric L1 distance. We
first get context distributions dp and dq by nor-
malizing wp and wq, respectively. Ideally, the
context distribution of the hypernym dp will in-
clude dq. This suggests the hypernym distribu-
tion dp is larger than context distribution of the
hyponym with a proper scaling factor adq (i.e.,
max(adq − dp, 0) should be small). Furthermore,
both distributions should be similar, so adq should
not be too different from dp (i.e., max(dp−adq, 0)
should also be small). Therefore, we define asym-



metric L1 distance as

AL1 = min
a

∑
c

w0 ·max(adq[c]− dp[c], 0)+

max(dp[c]− adq[c], 0),
(1)

where w0 is a constant which emphasizes the in-
clusion penalty. If w0 = 1 and a = 1, AL1 is
equivalent to L1 distance. The lowerAL1 distance
implies a higher chance of observing the hyper-
nym relation. Figure 4 illustrates a visualization
of AL1 distance. We tried w0 = 5 and w0 = 20.
w0 = 20 produces a worse micro-average AP@all
on SBOW Freq, SBOW PPMI and DIVE, so we
fix w0 to be 5 in all experiments. An efficient way
to solve the optimization in AL1 is presented in
Section 12.

8.2 Results and discussions

We show the micro-average AP@all on 10
datasets using different hypernymy scoring func-
tions in Table 6. We can see the similarity plus
generality signals such as C·∆S and W·∆S per-
form the best overall. Among the unnormalized
inclusion based scoring functions, CDE works the
best. AL1 performs well compared with other
functions which remove the frequency signal such
as Word2Vec, Cosine, and SLQS Row. The sum-
mation is the most robust generality measurement.
In the table, the scoring functions are applied to
SBOW Freq, but the performances of hypernymy
scoring functions on the other feature spaces (e.g.
DIVE) have a similar trend.

9 Comparison with reported results

Each paper uses slightly different setups2, so it is
hard to very fairly compare different approaches.
However, by comparing DIVE with reported num-
bers, we would like to show that the unsupervised
methods seem to be previously underestimated,
and it is possible for the unsupervised embed-
dings to achieve performances which are compa-
rable with semi-supervised embeddings when the
amount of training data is limited.

9.1 Comparison with SBOW

In Table 7, DIVE with two of the best scoring
functions (C·∆S and W·∆S) is compared with the

2Notice that some papers report F1 instead of AP. When
comparing with them, we use 20 fold cross validation to
determine prediction thresholds, as done by Roller and Erk
(2016).

previous unsupervised state-of-the-art approaches
based on SBOW on different datasets.

There are several reasons which might cause
the large performance gaps in some datasets. In
addition to the effectiveness of DIVE, some im-
provements come from our proposed scoring func-
tions. The fact that every paper uses a different
training corpus also affects the performances. Fur-
thermore, Shwartz et al. (2017) select the scoring
functions and feature space for the first 4 datasets
based on AP@100, which we believe is too sen-
sitive to the hyper-parameter settings of different
methods.

9.2 Comparison with semi-supervised
embeddings

In addition to the unsupervised approach, we also
compare DIVE with semi-supervised approaches.
When there are sufficient training data, there is
no doubt that the semi-supervised embedding ap-
proaches such as HyperNet (Shwartz et al., 2016),
H-feature detector (Roller and Erk, 2016), and Hy-
perVec (Nguyen et al., 2017) can achieve better
performance than all unsupervised methods. How-
ever, in many domains such as scientific literature,
there are often not many annotated hypernymy
pairs (e.g. Medical dataset (Levy et al., 2014)).

Since we are comparing an unsupervised
method with semi-supervised methods, it is hard
to fairly control the experimental setups and tune
the hyper-parameters. In Table 8, we only show
several performances which are copied from the
original paper when training data are limited3. As
we can see, the performance from DIVE is roughly
comparable to the previous semi-supervised ap-
proaches trained on small amount of hypernym
pairs. This demonstrates the robustness of our
approach and the difficulty of generalizing hy-
pernymy annotations with semi-supervised ap-
proaches.

10 Generality estimation and hypernym
directionality detection

In Table 9, we show the most general words in
DIVE under different queries as constraints. We
also present the accuracy of judging which word is

3We neglect the performances from models trained on
more than 10,000 hypernym pairs, models trained on the
same evaluation datasets with more than 1000 hypernym
pairs using cross-validation, and models using other sources
of information such as search engines and image classifiers
(e.g. the model from Kiela et al. (2015)).



Dataset BLESS EVALution LenciBenotto Weeds Medical
Metric AP@all F1

Baselines
invCL APSyn CDE Cosine

5.1 35.3 38.2 44.1 23.1
DIVE + C·∆S 16.3 33.0 50.4 65.5 25.3
DIVE + W·∆S 18.6 32.3 51.5 68.6 25.7

Dataset LEDS TM14 Kotlerman 2010 HyperNet HyperLex
Metric AP@all F1 Spearman ρ

Baselines
balAPinc SLQS Freq ratio

73 56 37 22.8 27.9
DIVE + C·∆S 83.5 57.2 36.6 41.9 32.8
DIVE + W·∆S 86.4 57.3 37.4 38.6 33.3

Table 7: Comparison with previous methods based on sparse bag of word (SBOW). All values are percentages.
The results of invCL (Lenci and Benotto, 2012), APSyn (Santus et al., 2016), and CDE (Clarke, 2009) are selected
because they have the best AP@100 in the first 4 datasets (Shwartz et al., 2017). Cosine similarity (Levy et al.,
2015), balAPinc (Kotlerman et al., 2010) in 3 datasets (Turney and Mohammad, 2015), SLQS (Santus et al., 2014)
in HyperNet dataset (Shwartz et al., 2016), and Freq ratio (FR) (Vulić et al., 2016) are compared.

Dataset HyperLex EVALution LenciBenotto Weeds Medical
Metric Spearman ρ AP@all F1

Baselines HyperVec (1337) H-feature (897)
(#Training Hypernymy) 30 39 44.8 58.5 26

DIVE + C·∆S (0) 34.5 33.8 52.9 70.0 25.3

Table 8: Comparison with semi-supervised embeddings (with limited training data). All values are percentages.
The number in parentheses beside each approach indicates the number of annotated hypernymy word pairs used to
train the model. Semi-supervised embeddings include HyperVec (Nguyen et al., 2017) and H-feature (Roller and
Erk, 2016). Note that HyperVec ignores POS in the testing data, so we follow the setup when comparing with it.

Query Top 30 general words
use name system include base city

large state group power death form
american life may small find body

design work produce control great write
study lead type people high create

species

specie species animal find plant may
human bird genus family organism suggest
gene tree name genetic study occur
fish disease live food cell mammal

evidence breed protein wild similar fossil

system

system use design provide operate model
standard type computer application develop method

allow function datum device control information
process code via base program software
network file development service transport law

Table 9: We show the top 30 words with the highest embedding magnitude after dot product with the query
embedding q (i.e. showing w such that ||wTq||1 is one of the top 30 highest values). The rows with the empty
query word sort words based on ||w||1.

a hypernym (more general) given word pairs with
hypernym relations in Table 10. The direction is
classified correctly if the generality score is greater
than 0 (hypernym is indeed predicted as the more
general word). For instance, summation difference
(∆S) classifies correctly if ||wp||1 − ||wq||1 > 0

(||wp||1 > ||wq||1).

From the table, we can see that the simple
summation difference performs better than SQLS
Sub, and DIVE predicts directionality as well as
SBOW. Notice that whenever we encounter OOV,
the directionality is predicted randomly. If OOV is



Micro Average (10 datasets)
SBOW Freq + SLQS Sub SBOW Freq +4S

64.4 66.8
SBOW PPMI +4S DIVE +4S

66.8 67.0

Table 10: Accuracy (%) of hypernym directionality
prediction across 10 datasets.

AP@all (%)
Medical

CDE AL1 ∆S W·∆S C·∆S

SBOW PPMI
wiki 23.4 8.7 13.2 20.1 24.4

PubMed 20.0 7.2 14.2 21.1 23.5

DIVE
wiki 11.7 9.3 13.7 21.4 19.2

PubMed 12.6 9.3 15.9 21.2 20.4

Table 11: Training corpora comparison

excluded, the accuracy of predicting directionality
using unsupervised methods can reach around 0.7-
0.75.

11 PubMed experiment

To demonstrate that DIVE can compress SBOW
in a different training corpus, we train DIVE and
SBOW PPMI on biomedical paper abstracts in a
subset of PubMed (Wei et al., 2012) and com-
pare their performances on Medical dataset (Levy
et al., 2014). We randomly shuffle the order of
abstracts, remove the stop words, and only use
the first 51.2 million tokens. The same hyper-
parameters of DIVE and SBOW PPMI are used,
and their AP@all are listed in Table 11. For most
scoring functions, the AP@all difference is within
1% compared with the model trained by WaCk-
ypedia.

12 Efficient way to compute asymmetric
L1 (AL1)

Recall that Equation 8 defines AL1 as follows:

L = min
a

∑
c

w0 max(adq[c]− dp[c], 0)+

max(dp[c]− adq[c], 0),

where dp[c] is one of dimension in the feature vec-
tor of hypernym dp, adq is the feature vector of
hyponym after proper scaling. In Figure 4, an sim-
ple example is visualized to illustrate the intuition
behind the distance function.

By adding slack variables ζ and ξ, the prob-
lem could be converted into a linear programming

problem:

L = min
a,ζ,ξ

w0

∑
c

ζc +
∑
c

ξc

ζc ≥ adq[c]− dp[c], ζc ≥ 0

ξc ≥ dp[c]− adq[c], ξc ≥ 0

a ≥ 0,

so it can be simply solved by a general linear pro-
gramming library.

Nevertheless, the structure of the problem actu-
ally allows us to solve this optimization by a sim-
ple sorting. In this section, we are going to derive
the efficient optimization algorithm.

By introducing Lagrangian multiplier for the
constraints, we can rewrite the problem as

L = min
a,ζ,ξ

max
α,β,γ,δ

w0

∑
c

ζc +
∑
c

ξc

−
∑
c

αc(ζc − adq[c] + dp[c])

−
∑
c

βc(ξc − dp[c] + adq[c])

−
∑
c

γcζc −
∑
c

δcξc

ζc ≥ 0, ξc ≥ 0, αc ≥ 0, βc ≥ 0,

γc ≥ 0, δc ≥ 0, a ≥ 0

First, we eliminate the slack variables by taking
derivatives with respect to them:

∂L
∂ζc

= 0 = 1− βc − δc

δc = 1− βc, βc ≤ 1

∂L
∂ξc

= 0 = 1− γc − αc

γc = w0 − αc, αc ≤ w0.

By substituting in these values for γc and δc, we
get rid of the slack variables and have a new La-
grangian:

L = min
a

max
α,β
−
∑
c

αc(−adq[c] + dp[c])

−
∑
c

βc(−dp[c] + adq[c])

0 ≤ αc ≤ w0, 0 ≤ βc ≤ 1, a ≥ 0

We can introduce a new dual variable λc = αc−



βc + 1 and rewrite this as:

L = min
a

max
λ

∑
c

(λc − 1)(adq[c]− dp[c])

0 ≤ λc ≤ w0 + 1, a ≥ 0

Let’s remove the constraint on a and replace
with a dual variable η:

L = min
a

max
λ

∑
c

(λc − 1)(adq[c]− dp[c])− ηa

0 ≤ λc ≤ w0 + 1, η ≥ 0

Now let’s differentiate with respect to a to get
rid of the primal objective and add a new con-
straint:

∂L
∂a

= 0 =
∑
c

λcdq[c]−
∑
c

dq[c]− η∑
c

λcdq[c] =
∑
c

dq[c] + η

L = max
λ

∑
c

dp[c]−
∑
c

λcdp[c]∑
c

λcdq[c] =
∑
c

dq[c] + η

0 ≤ λc ≤ w0 + 1, η ≥ 0

Now we have some constant terms that are just
the sums of dp and dq, which will be 1 if they are
distributions.

L = max
λ

1−
∑
c

λcdp[c]∑
c

λcdq[c] = 1 + η

0 ≤ λc ≤ w0 + 1, η ≥ 0

Now we introduce a new set of variables µc =
λcdq[c] and we can rewrite the objective as:

L = max
µ

1−
∑
c

µc
dp[c]

dq[c]∑
c

µc = 1 + η

0 ≤ µc ≤ (w0 + 1)dq[c], η ≥ 0

Note that for terms where dq[c] = 0 we can just
set dq[c] = ε for some very small epsilon, and
in practice, our algorithm will not encounter these
because it sorts.

So µ we can think of as some fixed budget that
we have to spend up until it adds up to 1, but it has

a limit of how much we can spend for each coor-
dinate, given by (w0 + 1)dq[c]. Since we’re trying
to minimize the term involving µ, we want to al-
locate as much budget as possible to the smallest
terms in the summand, and then 0 to the rest once
we’ve spent the budget. This also shows us that
our optimal value for the dual variable η is just 0
since we want to minimize the amount of budget
we have to allocate.

To make presentation easier, lets assume we sort
the vectors in order of increasing dp[c]

dq [c]
, so that

dp[1]
dq [1]

is the smallest element, etc. We can now give
the following algorithm to find the optimal µ.

init S = 0, c = 1, µ = 0

while S ≤ 1 :

µc = min(1− S, (w0 + 1)dq[c])

S = S + µc

c = c+ 1

At the end we can just plug in this optimal µ to
the objective to get the value of our scoring func-
tion.

References
Marco Baroni, Silvia Bernardini, Adriano Ferraresi,

and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language resources and
evaluation 43(3):209–226.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In workshop on
geometrical models of natural language semantics.
pages 112–119.

Chris Ding, Xiaofeng He, and Horst D Simon. 2005.
On the equivalence of nonnegative matrix factoriza-
tion and spectral clustering. In ICDM.

Douwe Kiela, Laura Rimell, Ivan Vulic, and Stephen
Clark. 2015. Exploiting image generality for lexical
entailment detection. In ACL.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering 16(4):359–389.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
SemEval.

Omer Levy, Ido Dagan, and Jacob Goldberger. 2014.
Focused entailment graphs for open IE propositions.
In CoNLL.



Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional methods
really learn lexical inference relations? In NAACL-
HTL.

Kim Anh Nguyen, Maximilian Köper, Sabine Schulte
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