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Modeling Patient-specific Information

The need for more patient-centric and precise assessments in the healthcare industry has motivated the development of intelligent
Clinical Decision Support Systems (CDSSs) [1]. Advanced medical interventions in ICUs make patients vulnerable to several
complications—the lack of accurate knowledge of the etiology of such complications leads to the inability to accurately stratify
risk. Structured medical data in the form of Electronic Health Records (EHRs) contain numerical assessments (e.g., lab results) and
are amenable to standard statistical analysis. However, unstructured clinical text and images also contain valuable information
concerning the state of a patient. Clinical nursing notes maintain objective and subjective assessments of a
patient’s condition—can be utilized to uncover hidden clues about the mental state of a patient. As these notes are
informally written, modeling such notes is challenging due to their high-dimensionality, rawness, sparsity,
complex linguistic and temporal nature, inconsistent abbreviations, and occurrence of rich medical jargon.
The voluminosity of nursing notes can be observed from the heavy-tailed distribution of the MIMIC-III nursing notes across various
patients, with an average of 176.49 nursing notes per patient.
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Figure 1: Distribution of the nursing notes across various MIMIC-III subjects.

Objectives

• Design of FarSight, a long-term aggregation mechanism that employs future lookup to detect disease onset with the
earliest recorded symptoms, to enable prioritized care and prevent further complications.
• Leveraging vector space and topic modeling approaches to derive optimal data representations from the unstructured
clinical text, essential for accurate ICD-9 code group prediction. Our experimental results corroborate the efficacy of the
proposed strategy when compared to state-of-the-art models built on structured patient data.
• Designing a technique that utilizes voluminous nursing notes for accurate risk stratification, thus eliminating the
dependency on the availability of structured EHRs. This eliminates a significant roadblock in the development of CDSSs
for hospitals in developing nations with low structured EHR adoption rates.

Coherence-based Modeling of Clinical Notes
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HDP ClustersFigure 2: Correlations between top terms’ membership in
top five coherence-based LDA clusters.

Latent Dirichlet Allocation (LDA) is a cluster analysis approach based on
the three-layer Bayesian framework: documents, topics, and tokens. LDA
draws a mixture of topics from the Dirichlet distribution and facilitates a
soft probabilistic clustering of tokens into topics and documents into topics.
LDA posits that each term and clinical note belong to a set of clinical topics
with a certain probability. Nonnegative Matrix Factorization (NMF) is a
factorization approach that decomposes multivariate data into topics. In
NMF, each topic is a nonnegative linear combination of the tokens in the
vocabulary. NMF iteratively decomposes the data matrix (N×|V|) into two
lower rank matrices with T topics (N×T and T ×|V|). These topic models
capture the context of occurrence and co-occurrence, which is essential for
accurate predictability of the underlying deep neural models. Determining
the optimal number of LDA or NMF clusters is a challenging task. To address
this issue, we utilize the Topic Coherence (TC) [3] between the topics to derive
the optimal number of clusters. Furthermore, when topics are learned from a
multinomial distribution over words from noisy and sparse text data, they are

less coherent and hard to interpret. TC evaluates topic models with a greater guarantee of human interpretability.
In our work, we adopt LDA and NMF with TC (C-LDA and C-NMF) as TC accounts for the semantic similarity between the
higher scoring tokens and facilitates the generation of human-understandable topics. Let T = {t1, t2, . . . , tk} be a topic generated
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Figure 3: Coherence score comparison to determine the
optimal number of topics.

from a topic model which is represented using its top-k most probable to-
kens (tis). Note that higher values of the average pairwise similarity among
the tokens in T imply greater coherence of the topic. For a predetermined
similarity measure S(ti, tj) (here NPMI), coherence score is computed
as shown in (1):

CoherenceS(T ) =

∑
1≤i≤k−1
i+1≤j≤k

S(ti, tj)(
k
2
) (1)

where ti, tj ∈ T . The coherence score comes from external data, i.e., the data
not used during training, and is intended to regularize the topic models. The
NPMI similarity score is an extension of the pointwise mutual information
score, and is used in finding associations and collocations between the words.

NPMI(ti, tj) = PMI(ti, tj)
−log2(Pr(ti, tj))

; PMI(ti, tj) = log2

(
Pr(ti, tj)

Pr(ti)Pr(tj)

)
(2)

The individual confirmation measures obtained for all topics (Tis) are averaged to obtain the final coherence score. The number
of topics for both LDA and NMF models was determined to be 100, by computing the coherence score of several topic models.
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Figure 4: Comparison of ICD-9 code group statistics with the
state-of-the-art model [2].

ICD-9 codes are a taxonomy of diagnostic codes typically used
by healthcare professionals. This study only focuses on group
predictions, owing to the high granularity of the diagnostic
codes—each code group comprises a set of similar diseases.
This study focuses on the risk stratification as a
multi-label problem, where each nursing note is mapped
to multiple ICD-9 code groups. The ICD-9 codes for a given
admission are mapped into 19 distinct code groups. The ICD-9
code range of 760− 779 was left out since it corresponds to the
conditions originating in the perinatal period, which is usu-
ally assigned to newborns, who are excluded from this study.
Additionally, to lower the computational cost of training, we
merged all the reference and supplemental V-codes into a sin-
gle code group. Although our work and the state-of-the-art [2]
differ in data and cohort selection, both the works share similar
statistics concerning the ICD-9 code groups, thus facilitating a
fair comparison of performance.
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Deep Neural Learning for Code Group Prediction

Two deep neural models, Multi-layer Perceptron (MLP) and Attention LSTM (A-LSTM) are employed for code
group prediction—trained to minimize binary cross-entropy loss using an Adam optimizer (batch size of 128, eight epochs).

In MLP, the output of a neuron in every layer serves as an input to the subsequent layer. A neuron in the current layer (l)
with the input I(l) is activated in the following layer (l + 1) as g(l)(W (l) · I(l) + b(l)), where g(l) is a non-linear activation such as
Rectified Linear Unit (ReLU), tanh, or logistic sigmoid, and b(l) and W (l) are the bias and weight matrix at layer l. MLP uses
backpropagation to determine the gradient of the loss function. This study employs an MLP network with one hidden layer of 75
nodes, activated using a ReLU function, and one output layer of 19 nodes, activated using a sigmoid function.

LSTM employs four gates, including the input gate i, the forget gate f , the output gate o, and the candidate value g for the
cell state. The precise form of an LSTM update at a layer l and time step t is:

i
f
o
g

 =


sigm
sigm
sigm
tanh

W (l)

(
h

(l)
t−1

h
(l−1)
t

)
; c(l)

t = f � c(l)
t−1 + i� g; h(l)

t = o� tanh(c(l)
t ) (3)

We utilize the attention mechanism for the clinical task. Let H be the matrix of output vectors [h1, h2, . . . , hT ] produced from
LSTM. The representation rj of a nursing note ηj after T time steps is computed as H · (softmax(vT · tanh(H)))T , where v is a
trainable parameter. We use an attention LSTM with dimension size of 289 for the embedding (17 time steps) and 300 for the
LSTM hidden state. The multi-label classification is facilitated using a sigmoid activation of the final A-LSTM output.
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Figure 5: NLP pipeline used in the prediction of the ICD-9 code group.

Parameter Total

Clinical nursing notes 223, 556
Sentences in the nursing notes 5, 244, 541
Words in the nursing notes 79, 988, 065
Unique words in the nursing notes 715, 821

Table 1: Statistics of the nursing note text corpus.

MIMIC-III provides comprehensive health data of over 40, 000 ICU pa-
tients. Predefined selection criteria were employed for cohort selection—
firstly, records corresponding to patients older than 15 were retained, and
secondly, only the first hospital admission of a patient was considered. Erro-
neous entries were filtered out and duplicate patient records were identified
and removed. The resultant dataset consisted of nursing notes corresponding
to 6, 532 patients, and the data in these records were aggregated
using the proposed FarSight technique, which was designed to ag-
gregate the patient data using a future lookup on all the detected diseases
in the later medical records concerning that patient. If P is the set of all

patients, and a patient p has a sequence of N clinical notes, then S(p) = {(η(p)
i , I(p)

i )}Ni=1, with each clinical note η(p)
i is mapped

to a code I(p)
i indexed in chronological order. Now, FarSight aggregates the ICD-9 codes across the nursing notes of a patient

using a future lookup, resulting in S(p) = {(η(p)
i , I(p))}Ni=1, where I(p) = {I(p)

i }Ni=1. We aim at learning a function F to estimate
the probability of classifying a given nursing note η(p)

j into a set of diagnostic code groups: F(S(p)) ≈ Pr(I(p) | ηpj ).

Results and Discussion
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Figure 6: Comparison of the proposed approach with the
state-of-the-art model [2].

AUPRC varies with changes in target class ratio, and hence is more in-
formative than AUROC while evaluating imbalanced data. F1 score cap-
tures both precision and recall of the prediction, while, MCC accounts for
true positives, false positives, and false negatives, thus serving as a bal-
anced measure even with class imbalance. The existing works, including
the state-of-the-art model [2], are built on the structured EHRs, modeled
using numerical feature sets to aid in the prediction of clinical events.
Our model built on the unstructured medical text and pre-
processed using the FarSight approach outperformed the
state-of-the-art model by 11.50% in AUPRC and 1.16% in
AUROC. Furthermore, the existing works do not benchmark their per-
formance only on AUPRC and AUROC metrics. FarSight effectively
models the unstructured data to facilitate the detection of the onset of
the disease with the earliest recorded symptoms, and such modeling re-
sults in an improvement in the clinical decision-making process. We ob-

served that utilizing FarSight helps in accurate health risk appraisal well in advance, with an overall accuracy of 80%. Thus,
CDSSs built on the predictive capabilities of FarSight-aggregated and C-LDA classified modeling could demonstrate effective
patient-centric and evidence-based risk assessment, thus ensuring proper channeling of preventive and prioritized care.

Data Model Classifier
Performance score

ACC F1 MCC AUPRC AUROC

C-LDA
(140, 792× 100)

MLP 0.7954± 0.0003 0.7175± 0.0008 0.5743± 0.0006 0.6692± 0.0006 0.7857± 0.0004
A-LSTM 0.7932± 0.0002 0.7186± 0.0002 0.5712± 0.0007 0.6660± 0.0007 0.7854± 0.0013

C-NMF
(140, 792× 100)

MLP 0.7826± 0.0004 0.7011± 0.0008 0.5480± 0.0007 0.6530± 0.0013 0.7735± 0.0006
A-LSTM 0.7811± 0.0005 0.6990± 0.0040 0.5449± 0.0007 0.6510± 0.0009 0.7715± 0.0026

LDA
(140, 792× 100)

MLP 0.7950± 0.0003 0.7168± 0.0020 0.5735± 0.0012 0.6685± 0.0013 0.7848± 0.0011
A-LSTM 0.7930± 0.0007 0.7153± 0.0034 0.5701± 0.0022 0.6655± 0.0013 0.7833± 0.0020

NMF
(140, 792× 100)

MLP 0.7829± 0.0006 0.7029± 0.0016 0.5498± 0.0009 0.6530± 0.0017 0.7744± 0.0007
A-LSTM 0.7815± 0.0008 0.6935± 0.0052 0.5451± 0.0024 0.6535± 0.0014 0.7689± 0.0031

Table 2: Experimental results for ICD-9 code group prediction using MLP and A-LSTM.

Concluding Remarks

FarSight, a preventive care mechanism for detecting disease onset with earliest recorded symptoms is presented. Two coherence-
based topic modeling approaches were employed to capture the semantic information in unstructured nursing notes and derive
optimal representations with emphasis on human interpretability, further leveraged for ICD-9 code group prediction using deep
neural models. We benchmarked the performance of the proposed models using several evaluation metrics essential in the
accurate assessment of reliability and robustness. The proposed model outperformed the structured EHR data
based state-of-the-art model with an improvement of 11.50% in terms of AUPRC and 1.16% in terms of
AUROC. Moreover, our model eliminates the dependency on structured EHRs, typically a prerequisite requirement for the
development of CDSSs, thus is extremely vital in countries with low EHR adoption rates.
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