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A Model of Grounded Speech Perception
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Speech Model
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Project to the joint semantic space

• Attention: weighted sum of 
last RHN layer units

• RHN: Recurrent Highway 
Networks (Zilly et al., 2016)

• Convolution: subsampling 
MFCC vector



Chrupała et al., ACL‘2017

• Representation of language in a model of visually grounded 
speech signal

• Using hidden layer activations in a set of auxiliary tasks

• Predicting utterance length and content, measuring 
representational similarity and disambiguation of homonyms

• Main findings:

• Encodings of form and meaning emerge and evolve in hidden 
layers of stacked RNNs processing grounded speech
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Current Study

• Questions: how is phonology encoded in

• MFCC features extracted from speech signal?

• activations of the layers of the model? 

• Data: Synthetically Spoken COCO dataset

• Experiments:

• Phoneme decoding and clustering

• Phoneme discrimination

• Synonym discrimination

9  
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Phoneme Decoding

• Identifying phonemes from speech signal/activation 
patterns: supervised classification of aligned phonemes

• Speech signal was aligned with phonemic transcription 
using Gentle toolkit (based on Kaldi, Povey et al., 2011)
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Phoneme Decoding

• Identifying phonemes from speech signal/activation 
patterns: supervised classification of aligned phonemes
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MFCC features and activations) are stored in a
tr ⇥ Dr matrix, where tr and Dr are the num-
ber of times steps and the dimensionality, respec-
tively, for each representation r. Given the align-
ment of each phoneme token to the underlying au-
dio, we then infer the slice of the representation
matrix corresponding to it.

5 Experiments

In this section we report on four experiments
which we designed to elucidate to what extent in-
formation about phonology is represented in the
activations of the layers of the COCO Speech
model. In Section 5.1 we quantify how easy it is
to decode phoneme identity from activations. In
Section 5.2 we determine phoneme discriminabil-
ity in a controlled task with minimal pair stimuli.
Section 5.3 shows how the phoneme inventory is
organized in the activation space of the model. Fi-
nally, in Section 5.4 we tackle the general issue
of the representation of phonological form versus
meaning with the controlled task of synonym dis-
crimination.

5.1 Phoneme decoding

In this section we quantify to what extent phoneme
identity can be decoded from the input MFCC fea-
tures as compared to the representations extracted
from the COCO speech. As explained in Sec-
tion 4.3, we use phonemic transcriptions aligned
to the corresponding audio in order to segment
the signal into chunks corresponding to individual
phonemes.

We take a subset of 5000 utterances from the
validation set of Synthetically Spoken COCO, and
extract the force-aligned representations from the
Speech COCO model. We split this data into 2

3
training and 1

3 heldout portions, and use super-
vised classification in order to quantify the recov-
erability of phoneme identities from the represen-
tations. Each phoneme slice is averaged over time,
so that it becomes a Dr-dimensional vector. For
each representation we then train L2-penalized lo-
gistic regression (with the fixed penalty weight
1.0) on the training data and measure classifica-
tion error rate on the heldout portion.

Figure 1 shows the results. As can be seen from
this plot, phoneme recoverability is poor for the
representations based on MFCC and the convolu-
tional layer activations, but improves markedly for
the recurrent layers. Phonemes are easiest recov-

ered from the activations at recurrent layers 1 and
2, and the accuracy decreases thereafter. This sug-
gests that the bottom recurrent layers of the model
specialize in recognizing this type of low-level
phonological information. It is notable however
that even the last recurrent layer encodes phoneme
identity to a substantial degree.
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Figure 1: Accuracy of phoneme decoding with
input MFCC features and COCO Speech model
activations. The boxplot shows error rates boot-
strapped with 1000 resamples.

5.2 Phoneme discrimination

Schatz et al. (2013) propose a framework for eval-
uating speech features learned in an unsupervised
setup that does not depend on phonetically labeled
data. They propose a set of tasks called Minimal-
Pair ABX tasks that allow to make linguistically
precise comparisons between syllable pairs that
only differ by one phoneme. They use variants of
this task to study phoneme discrimination across
talkers and phonetic contexts as well as talker dis-
crimination across phonemes.

Here we evaluate the COCO Speech model on
the Phoneme across Context (PaC) task of Schatz
et al. (2013). This task consists of presenting a se-
ries of equal-length tuples (A,B,X) to the model,
where A and B differ by one phoneme (either a
vowel or a consonant), as do B and X , but A and
X are not minimal pairs. For example, in the tu-
ple (be /bi/, me /mi/, my /maI/), human subjects
are asked to identify which of the two syllables be
or me are closest to my. The goal is to measure



• ABX task (Schatz et al., 2013): discriminate minimal pairs; is 
X closer to A or to B?

• A, B and X are CV syllables

• (A,B) and (B,X) are minimum pairs, but (A,X) are not  
(34,288 tuples in total)

Phoneme Discrimination
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A: be /bi/ B: me /mi/

X: my /maI/
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Table 3: Accuracy of choosing the correct target
in an ABX task using different representations.

MFCC 0.71
Convolutional 0.73
Recurrent 1 0.82
Recurrent 2 0.82
Recurrent 3 0.80
Recurrent 4 0.76
Recurrent 5 0.74

context invariance in phoneme discrimination by
evaluating how often the model recognises X as
the syllable closer to B than to A.

We used a list of all attested consonant-vowel
(CV) syllables of American English according to
the syllabification method described in Gorman
(2013). We excluded the ones which could not be
unambiguously represented using English spelling
for input to the TTS system (e.g. /baU/). We then
compiled a list of all possible (A,B,X) tuples
from this list where (A,B) and (B,X) are min-
imal pairs, but (A,X) are not. This resulted in
34,288 tuples in total. For each tuple, we measure
sign(dist(A,X) � dist(B,X)), where dist(i, j)
is the euclidean distance between the vector rep-
resentations of syllables i and j. These represen-
tations are either the audio feature vectors or the
layer activation vectors. A positive value for a tu-
ple means that the model has correctly discrim-
inated the phonemes that are shared or different
across the syllables.

Table 3 shows the discrimination accuracy in
this task using various representations. The pat-
tern is similar to what we observed in the phoneme
identification task: best accuracy is achieved using
representation vectors from recurrent layers 1 and
2, and it drops as we move further up in the model.
The accuracy is lowest when MFCC features are
used for this task.

However, the PaC task is most meaningful and
challenging where the target and the distractor
phonemes belong to the same phoneme class. Fig-
ure 2 shows the accuracies for this subset of cases,
broken down by class. As can be seen, the model
can discriminate between phonemes with high ac-
curacy across all the layers, and the layer activa-
tions are more informative for this task than the
MFCC features. Again, phonemes seem to be rep-
resented more accurately in the lower layers, and
the performance of the model in this task drops
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Figure 2: Accuracies for the ABX CV task for the
cases where the target and the distractor belong to
the same phoneme class.

as we move towards higher hidden layers. There
are also clear differences in the pattern of discrim-
inability for the phoneme classes. The vowels are
especially easy to tell apart, but accuracy on vow-
els drops most acutely in the higher layers. Mean-
while the accuracy on fricatives and approximants
starts low, but improves rapidly and peaks around
recurrent layer 2.

5.3 Organization of phonemes

In this section we take a closer look at the un-
derlying organization of phonemes in the model.
Our experiment is inspired by Khalighinejad et al.
(2017) who study how the speech signal is repre-
sented in the brain at different stages of the au-
ditory pathway by collecting and analyzing elec-
troencephalography responses from participants
listening to continuous speech, and show that
brain responses to different phoneme categories
turn out to be organized by phonetic features.

We carry out an analogous experiment by an-
alyzing the hidden layer activations of our model
in response to each phoneme in the input. First,
we generated a distance matrix for every pair of
phonemes by calculating the Euclidean distance
between the phoneme pair’s activation vectors for
each layer separately, as well as a distance matrix
for all phoneme pairs based on their MFCC fea-
tures. Similar to what Khalighinejad et al. (2017)
report, we observe that the phoneme activations on
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• The task is most challenging when the target (B) and 
distractor (A) belong to the same phoneme class

A: be /bi/ B: me /mi/

X: my /maI/
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• The task is most challenging when the target (B) and 
distractor (A) belong to the same phoneme class
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cessively according to:

encu(u) = unit(Attn(RHNk,L(Convs,d,z(u))))
(2)

The first layer Convs,d,z is a one-dimensional con-
volution of size s which subsamples the input with
stride z, and projects it to d dimensions. It is fol-
lowed by RHNk,L which consists of k residual-
ized recurrent layers. Specifically these are Recur-
rent Highway Network layers (Zilly et al., 2016),
which are closely related to GRU networks, with
the crucial difference that they increase the depth
of the transform between timesteps; this is the re-
currence depth L. The output of the final recurrent
layer is passed through an attention-like lookback
operator Attn which takes a weighted average of
the activations across time steps. Finally, both ut-
terance and image projections are L2-normalized.
See Section 4.1 for details of the model configura-
tion.

4 Experimental data and setup

The phoneme activations in each layer are calcu-
lated as the activations averaged over the duration
of the phoneme token in the input. The average in-
put vectors are similarly calculated as the MFCC
vectors averaged over the time course of the ar-
ticulation of the phoneme token. When we need
to represent a phoneme type we do so by averag-
ing the vectors of all its instances in the valida-
tion set. Table 1 shows the phoneme inventory we

Vowels i I U u
e E @ Ä OI O o
aI æ 2 A aU

Approximants j ô l w
Nasals m n N
Plosives p b t d k g
Fricatives f v T D s z S Z h
Affricates Ù Ã

Table 1: Phonemes of General American English.

work with; this is also the inventory used by Gen-
tle/Kaldi (see Section 4.3).

4.1 Model settings
We use the pre-trained version of the
COCO Speech model, implemented in Theano
(Bastien et al., 2012), provided by Chrupała et al.
(2017a).1 The details of the model configuration

1Available at https://doi.org/10.5281/zenodo.495455.

Attention: size 512
Recurrent 5: size 512
Recurrent 4: size 512
Recurrent 3: size 512
Recurrent 2: size 512
Recurrent 1: size 512

Convolutional: size 64, length 6, stride 3
Input MFCC: size 13

Table 2: COCO Speech utterance encoder archi-
tecture.

are as follows: convolutional layer with length 6,
size 64, stride 3, 5 Recurrent Highway Network
layers with 512 dimensions and 2 microsteps,
attention Multi-Layer Perceptron with 512 hid-
den units, Adam optimizer, initial learning rate
0.0002. The 4096-dimensional image feature
vectors come from the final fully connect layer of
VGG-16 (Simonyan and Zisserman, 2014) pre-
trained on Imagenet (Russakovsky et al., 2014),
and are averages of feature vectors for ten crops
of each image. The total number of learnable
parameters is 9,784,193. Table 2 sketches the
architecture of the utterance encoder part of the
model.

4.2 Synthetically Spoken COCO

The Speech COCO model was trained on the Syn-
thetically Spoken COCO dataset (Chrupała et al.,
2017b), which is a version of the MS COCO
dataset (Lin et al., 2014) where speech was syn-
thesized for the original image descriptions, using
high-quality speech synthesis provided by gTTS.2

4.3 Forced alignment

We aligned the speech signal to the corresponding
phonemic transcription with the Gentle toolkit,3

which in turn is based on Kaldi (Povey et al.,
2011). It uses a speech recognition model for En-
glish to transcribe the input audio signal, and then
finds the optimal alignment of the transcription to
the signal. This fails for a small number of utter-
ances, which we remove from the data. In the next
step we extract MFCC features from the audio sig-
nal and pass them through the COCO Speech ut-
terance encoder, and record the activations for the
convolutional layer as well as all the recurrent lay-
ers. For each utterance the representations (i.e.

2Available at https://github.com/pndurette/gTTS.
3Available at https://github.com/lowerquality/gentle.
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Table 3: Accuracy of choosing the correct target
in an ABX task using different representations.

MFCC 0.71
Convolutional 0.73
Recurrent 1 0.82
Recurrent 2 0.82
Recurrent 3 0.80
Recurrent 4 0.76
Recurrent 5 0.74

context invariance in phoneme discrimination by
evaluating how often the model recognises X as
the syllable closer to B than to A.

We used a list of all attested consonant-vowel
(CV) syllables of American English according to
the syllabification method described in Gorman
(2013). We excluded the ones which could not be
unambiguously represented using English spelling
for input to the TTS system (e.g. /baU/). We then
compiled a list of all possible (A,B,X) tuples
from this list where (A,B) and (B,X) are min-
imal pairs, but (A,X) are not. This resulted in
34,288 tuples in total. For each tuple, we measure
sign(dist(A,X) � dist(B,X)), where dist(i, j)
is the euclidean distance between the vector rep-
resentations of syllables i and j. These represen-
tations are either the audio feature vectors or the
layer activation vectors. A positive value for a tu-
ple means that the model has correctly discrim-
inated the phonemes that are shared or different
across the syllables.

Table 3 shows the discrimination accuracy in
this task using various representations. The pat-
tern is similar to what we observed in the phoneme
identification task: best accuracy is achieved using
representation vectors from recurrent layers 1 and
2, and it drops as we move further up in the model.
The accuracy is lowest when MFCC features are
used for this task.

However, the PaC task is most meaningful and
challenging where the target and the distractor
phonemes belong to the same phoneme class. Fig-
ure 2 shows the accuracies for this subset of cases,
broken down by class. As can be seen, the model
can discriminate between phonemes with high ac-
curacy across all the layers, and the layer activa-
tions are more informative for this task than the
MFCC features. Again, phonemes seem to be rep-
resented more accurately in the lower layers, and
the performance of the model in this task drops

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

mfcc conv rec1 rec2 rec3 rec4 rec5
Representation

Ac
cu
ra
cy

Class ●

●

●

●

●

●

affricate
approximant

fricative
nasal

plosive
vowel

Figure 2: Accuracies for the ABX CV task for the
cases where the target and the distractor belong to
the same phoneme class.

as we move towards higher hidden layers. There
are also clear differences in the pattern of discrim-
inability for the phoneme classes. The vowels are
especially easy to tell apart, but accuracy on vow-
els drops most acutely in the higher layers. Mean-
while the accuracy on fricatives and approximants
starts low, but improves rapidly and peaks around
recurrent layer 2.

5.3 Organization of phonemes

In this section we take a closer look at the un-
derlying organization of phonemes in the model.
Our experiment is inspired by Khalighinejad et al.
(2017) who study how the speech signal is repre-
sented in the brain at different stages of the au-
ditory pathway by collecting and analyzing elec-
troencephalography responses from participants
listening to continuous speech, and show that
brain responses to different phoneme categories
turn out to be organized by phonetic features.

We carry out an analogous experiment by an-
alyzing the hidden layer activations of our model
in response to each phoneme in the input. First,
we generated a distance matrix for every pair of
phonemes by calculating the Euclidean distance
between the phoneme pair’s activation vectors for
each layer separately, as well as a distance matrix
for all phoneme pairs based on their MFCC fea-
tures. Similar to what Khalighinejad et al. (2017)
report, we observe that the phoneme activations on

• The task is most challenging when the target (B) and 
distractor (A) belong to the same phoneme class



Organization of Phonemes

• Agglomerative hierarchical clustering of phoneme 
activation vectors from the first hidden layer:
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Figure 4: Hierarchical clustering of phoneme activation vectors on the first hidden layer.
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Figure 6: Synonym discrimination error rates, per
representation and synonym pair.

tence embeddings give relatively high error rates
suggesting that the attention layer acts to focus
on semantic information and filter out much of
phonological form.

6 Discussion

Understanding distributed representations learned
by neural networks is important but has the rep-
utation of being hard to impossible. In this work
we focus on making progress on this problem for
a particular domain: representations of phonology

in a multilayer recurrent neural network trained on
grounded speech signal. We believe it is impor-
tant to carry out multiple analyses using diverse
methodology: any single experiment may be mis-
leading as it depends on analytical choices such as
the type of supervised model used for decoding,
the algorithm used for clustering, or the similarity
metric for representational similarity analysis. To
the extent that more than one experiment points to
the same conclusion our confidence in the reliabil-
ity of the insights gained will be increased.

The main high-level result of our study con-
firms earlier work: encoding of semantics be-
comes stronger in higher layer, while encoding of
form becomes weaker. This general pattern is to
be expected as the objective of the utterance en-
coder is to transform the input acoustic features
in such a way that it can be matched to its coun-
terpart in a completely separate modality. Many
of the details of how this happens, however, are
far from obvious: perhaps most surprisingly we
found that large amount of phonological informa-
tion persist up to the top recurrent layer. Evidence
for this pattern emerges from the phoneme decod-
ing task, the ABX task and the synonym discrim-
ination task. The last one also shows that the at-
tention layer filters out and significantly attenuates
encoding of phonology and makes the utterance
embeddings much more invariant to synonymy.

In future work we would like to apply our
methodology to other models and data, especially
human speech data. We would also like to make
comparisons to the results that emerge from simi-
lar analyses applied to neuroimaging data.



Synonym Discrimination

• Distinguishing between synonym pairs in the same context:

• A girl looking at a photo

• A girl looking at a picture

• Synonyms were selected using WordNet synsets:

• The pair have the same POS tag and are interchangeable 

• The pair clearly differ in form (not donut/doughnut)

• The more frequent token in a pair constitutes less than 95% of 
the occurrences.
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Synonym Discrimination
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Figure 4: Hierarchical clustering of phoneme activation vectors on the first hidden layer.
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representation and synonym pair.

tence embeddings give relatively high error rates
suggesting that the attention layer acts to focus
on semantic information and filter out much of
phonological form.

6 Discussion

Understanding distributed representations learned
by neural networks is important but has the rep-
utation of being hard to impossible. In this work
we focus on making progress on this problem for
a particular domain: representations of phonology

in a multilayer recurrent neural network trained on
grounded speech signal. We believe it is impor-
tant to carry out multiple analyses using diverse
methodology: any single experiment may be mis-
leading as it depends on analytical choices such as
the type of supervised model used for decoding,
the algorithm used for clustering, or the similarity
metric for representational similarity analysis. To
the extent that more than one experiment points to
the same conclusion our confidence in the reliabil-
ity of the insights gained will be increased.

The main high-level result of our study con-
firms earlier work: encoding of semantics be-
comes stronger in higher layer, while encoding of
form becomes weaker. This general pattern is to
be expected as the objective of the utterance en-
coder is to transform the input acoustic features
in such a way that it can be matched to its coun-
terpart in a completely separate modality. Many
of the details of how this happens, however, are
far from obvious: perhaps most surprisingly we
found that large amount of phonological informa-
tion persist up to the top recurrent layer. Evidence
for this pattern emerges from the phoneme decod-
ing task, the ABX task and the synonym discrim-
ination task. The last one also shows that the at-
tention layer filters out and significantly attenuates
encoding of phonology and makes the utterance
embeddings much more invariant to synonymy.

In future work we would like to apply our
methodology to other models and data, especially
human speech data. We would also like to make
comparisons to the results that emerge from simi-
lar analyses applied to neuroimaging data.
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Figure 4: Hierarchical clustering of phoneme activation vectors on the first hidden layer.
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Figure 6: Synonym discrimination error rates, per
representation and synonym pair.

tence embeddings give relatively high error rates
suggesting that the attention layer acts to focus
on semantic information and filter out much of
phonological form.

6 Discussion

Understanding distributed representations learned
by neural networks is important but has the rep-
utation of being hard to impossible. In this work
we focus on making progress on this problem for
a particular domain: representations of phonology

in a multilayer recurrent neural network trained on
grounded speech signal. We believe it is impor-
tant to carry out multiple analyses using diverse
methodology: any single experiment may be mis-
leading as it depends on analytical choices such as
the type of supervised model used for decoding,
the algorithm used for clustering, or the similarity
metric for representational similarity analysis. To
the extent that more than one experiment points to
the same conclusion our confidence in the reliabil-
ity of the insights gained will be increased.

The main high-level result of our study con-
firms earlier work: encoding of semantics be-
comes stronger in higher layer, while encoding of
form becomes weaker. This general pattern is to
be expected as the objective of the utterance en-
coder is to transform the input acoustic features
in such a way that it can be matched to its coun-
terpart in a completely separate modality. Many
of the details of how this happens, however, are
far from obvious: perhaps most surprisingly we
found that large amount of phonological informa-
tion persist up to the top recurrent layer. Evidence
for this pattern emerges from the phoneme decod-
ing task, the ABX task and the synonym discrim-
ination task. The last one also shows that the at-
tention layer filters out and significantly attenuates
encoding of phonology and makes the utterance
embeddings much more invariant to synonymy.

In future work we would like to apply our
methodology to other models and data, especially
human speech data. We would also like to make
comparisons to the results that emerge from simi-
lar analyses applied to neuroimaging data.



Conclusion

• Phoneme representations are most salient in lower layers 

• Large amount of phonological information persists up to 
the top recurrent layer

• The attention layer filters out and significantly attenuates 
encoding of phonology and makes utterance embeddings 
more invariant to synonymy
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Code: https://github.com/gchrupala/encoding-of-phonology


