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➢ Unsupervised sense embeddings

➢ Knowledge-based sense embeddings
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➢ Unsupervised sense embeddings

Learn sense embeddings exploiting text corpora only (Huang et al. 
ACL 2012; Neelakantan et al. EMNLP 2014; Tian et al. COLING 2014; Li 
and Jurafsky, EMNLP 2015...). Easily adaptable to new domains.

 Drawbacks:

● Senses not interpretable (+change from model to model)
● Knowledge from resources cannot be easily exploited
● Senses (esp. not frequent ones) not easy to discriminate 

➢ Knowledge-based sense embeddings
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➢ Unsupervised sense embeddings

➢ Knowledge-based sense embeddings

Model senses as defined on a sense inventory.

Usually obtained as a postprocessing of word embeddings 
(Chen et al. EMNLP 2014; Rothe and Schütze, ACL 2015...):

● Several training phases
● Infrequent senses not accurately captured
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➢ Unsupervised sense embeddings

➢ Knowledge-based sense embeddings (Our approach)
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A word is the surface form of a sense: we can exploit this 
intrinsic relationship for jointly training word and sense 
embeddings.
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A word is the surface form of a sense: we can exploit this 
intrinsic relationship for jointly training word and sense 
embeddings.

How?

Updating the representation of the word and its 
associated senses interchangeably.
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Given as input a corpus and a semantic network:

1. Use a semantic network to link to each word its associated 
senses in context.

He withdrew money from the bank.
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He    withdrew     money   from   the   bank
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Given as input a corpus and a semantic network:

1. Use a semantic network to link to each word its associated 
senses in context.

2. Use a neural network where the update of word and sense 
embeddings is linked, exploiting virtual connections.
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Given as input a corpus and a semantic network:

1. Use a semantic network to link to each word its associated 
senses in context.

2. Use a neural network where the update of word and sense 
embeddings is linked, exploiting virtual connections.

In this way it is possible to learn word and sense/synset 
embeddings jointly on a single training.
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Once each word is connected to its set of senses in context, it is 
possible to modify standard word embedding architectures to 
take into account this information.

In this work we explore the CBOW architecture of Word2Vec 
(Mikolov et al. 2013) -> SW2V (Senses and Words to Vectors).

Other neural network architectures could be explored as well 
(Skip-gram also included in the code).

Methodology: Joint training of words and sense embeddings
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E=-log(p(wt|W
t))  

Words and associated senses used both as input and output.



Full architecture of SW2V (this work)
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E=-log(p(wt|W
t,St))  - ∑s∈St log(p(s|Wt,St))

Words and associated senses used both as input and output.



The architecture does not try to predict senses. No loss contribution from them.

Output layer alternatives: only words
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Senses are not included in the input layer. Only words contribute to the hidden state. 
This way, during backpropagation sense embeddings do not receive any gradient.

Input layer alternatives: only words
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During backpropagation, sense embeddings will receive the same gradient of 
the word they are associated with.
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E=-log(p(wt|W
t,St))  - ∑s∈St log(p(s|Wt,St))

During backpropagation, their embeddings will receive the same gradient of 
their associated senses.
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We used word similarity for analyzing the performance of 
sense embeddings on each of the nine configurations.

- Best configuration  - 

● Input layer: Only senses
● Output layer: Both words and senses

Why? (Intuition) Co-occurrence information gets duplicated if 
both words and senses are included in the input layer.
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➢ Best configuration used in all experiments

➢ Standard hyperparameters

➢ Semantic networks used: WordNet and BabelNet

➢ Corpora used: UMBC and Wikipedia

➢ Experiments on:

- Word and sense interconnectivity (qualitative)

- Word similarity

- Sense clustering
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Sense embeddings:

➢ Chen et al. (2014)

➢ AutoExtend (Rothe and Schütze, 2015)

➢ SensEmbed (Iacobacci et al. 2015)

➢ NASARI (Camacho-Collados et al. 2016)
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How coherent is the shared vector space of 
word and sense embeddings?

Intuition: the Most Frequent Sense (MFS) should be close to the 
word embedding -> Reasonably strong MFS baseline for WSD

Evaluation on two WSD datasets using the embeddings as a 
MFS baseline (closest sense embedding to its associated word 
embedding is selected).
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SemEval-07 SemEval-13

SW2V 39.9 54.0

AutoExtend 17.6 31.0

Baseline 24.8 34.9
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Word and sense interconnectivity: Example I
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Ten closest word and sense embeddings 
to the sense company (military unit)
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Word and sense interconnectivity: Example II
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Ten closest word and sense embeddings 
to the sense school (group of fish)
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All models using Wikipedia corpus (Pearson correlation)
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All models using UMBC corpus (Pearson correlation)



Evaluation: Sense clustering
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Some sense inventories make a fine-grained distinction between 
senses, which can be harmful on downstream applications (Hovy 
et al. 2013, Pilehvar et al. 2017).

Example: Bank 

Evaluation datasets (Dandala et al. 2013): Highly ambiguous 
words from past SemEval competitions.

Institution

Physical building



Evaluation: Sense clustering
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We presented SW2V: a neural architecture for jointly learning word 
and sense embeddings in the same vector space using text corpora 
and knowledge obtained from semantic networks.
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We presented SW2V: a neural architecture for jointly learning word 
and sense embeddings in the same vector space using text corpora 
and knowledge obtained from semantic networks.
 
Future work:

- Exploiting our model for other linked representations such as 
multilingual or Image-to-Text embeddings.

- Word Sense Disambiguation and Entity Linking.

- Integrating our embeddings into downstream NLP applications, 
following the lines of Pilehvar et al. (ACL 2017).
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Thank you!

Code and pre-trained models available at 

http://lcl.uniroma1.it/sw2v
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Given as input a corpus and a semantic network:

1. Use a semantic network to link to each word its associated 
senses in context.

He withdrew money from the bank.



Joint training of word and sense embeddings

Once each word is connected to its set of senses in context, it is possible 
to modify standard word embedding models to take into account this 
information.

Formally, given a target word at position t we have a set of words:

W={wt-n, … , wt, …, wt+n} with Wt=W \ wt

and a set of associated senses:

S = {St-n, … , St, …, St+n} and St=S \ St

with Si={si
1, … , si

k,i} the senses associated with the ith word.

We aim at minimizing: E=-log(p(wt|W
t,St))  - ∑s∈St log(p(s|Wt,St))
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Evaluation: Word similarity
Sense Embeddings SimLex-999 MEN

System Corpus r p r p

SW2VBN UMBC 0.49 0.47 0.75 0.75

SW2VWN UMBC 0.46 0.45 0.76 0.76

AutoExtend UMBC 0.47 0.45 0.74 0.75

AutoExtend Google-News 0.46 0.46 0.68 0.70

SW2VBN Wikipedia 0.47 0.43 0.71 0.73

SW2VWN Wikipedia 0.47 0.43 0.71 0.72

SensEmbed Wikipedia 0.43 0.39 0.65 0.70

Chen et al. 
(2014)

Wikipedia 0.46 0.43 0.62 0.62

Word Embeddings SimLex-999 MEN

System Corpus r p r p

Word2Vec UMBC 0.39 0.39 0.75 0.75

RetrofittingBN UMBC 0.47 0.46 0.75 0.76

RetrofittingWN UMBC 0.47 0.46 0.76 0.76

Word2Vec Wikipedia 0.39 0.38 0.71 0.72

RetrofittingBN Wikipedia 0.35 0.32 0.66 0.66

RetrofittingWN Wikipedia 0.47 0.44 0.73 0.73
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Evaluation: Sense clustering

Accuracy F-Measure

SW2V 87.8 63.9

SensEmbed 82.7 40.3

NASARI 87.0 62.5

Multi-SVM 85.5 -

Mono-SVM 83.5 -

Baseline 17.5 29.8
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Word and sense interconnectivity

SemEval-07 SemEval-13

SW2V 39.9 54.0

AutoExtend 17.6 31.0

Baseline 24.8 34.9
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