
Learning Kernels over Strings using Gaussian Processes -
Supplementary Material

A Derivations for the Vectorised Kernel and its Gradients

First, let’s restate the original kernel equations from [Lodhi et al., 2002, Cancedda et al., 2003]. For this we
use the following notation:

• A string s = s1, . . . , s|s| is a sequence of symbols, where |s| is the length of the sequence.

• A concatenation of two strings s and t is denoted by st.

• A substring s[i : j] is the substring si . . . sj of s. For notation simplicity, we also define s[: j] = s[1 :
j], the prefix of s up to symbol sj , and s[: −1] = s[1 : |s| − 1], the substring corresponding to all
symbols in s except for the last one.

We also going to assume different decay hyperparameters for gaps and symbol matches and the existence
of a similarity function sim between individual symbols. Given two strings s and t, the string kernel kn of
order n between these two strings is defined as follows:

k′0(s, t) = 1, for all s, t,

k′i(s, t) =

{
0, min(|s|, |t|) < i

λgk
′
i(s[: −1], t) + k′′i (s, t) otherwise

k′′i (s, t) =

{
0, min(|s|, |t|) < i

λgk
′′
i (s, t[: −1]) + λ2msim(s|s|, t|t|)k

′
i−1(s[: −1], t[: −1]) otherwise

ki(s, t) =


0, min(|s|, |t|) < i

ki(s[: −1], t) +
|t|∑
j
λ2msim(s|s|, tj)k

′
i−1(s[: −1], t[: j − 1]) otherwise

kn(s, t) =
n∑

i=1

µiki(s, t)

where λg and λm are the gap and match decay hyperparameters and µi is the weight for the intermediate
gappy n-gram kernel for subsequences of length i. The original string kernel from [Lodhi et al., 2002] can
be recovered by tying λg and λm, and by assuming the similarity function returns 1 if symbols are equal and
0 otherwise (hard match).

In the algorithm above, the match decay is only applied in conjunction with the similarity function, while
the gap decay is part of the recursions between k′′ and k′. Our vectorised version relies on two components:

• We precompute similarities over the symbols of the two strings, giving raise to a matrix S with di-
mensionality |s| × |t|.

1

• We unroll the recursion between k′′ and k′. This is done by first vectorising k′ in the form of a matrix
K′, which contains the values for k′ for each symbol pair. Then the recursion is unrolled by explicitly
encoding the gap decay weights into a matrix D` of dimensionality `× `:

D` =



0 λ0g λ1g λ2g . . . λ
|`|−2
g

0 0 λ0g λ1g . . . λ
|`|−3
g

0 0 0 λ0g . . . λ
|`|−4
g

...
...

...
...

. . .
...

0 0 0 0 . . . λ0g
0 0 0 0 . . . 0


This effectively adds redundant calculations to the algorithm but allows us to redefine it in terms of
vector and matrix multiplications.

Having defined these matrices, the remainder of the algorithm can readily be vectorised and results in
the version presented in the main paper, which we restate here:

S = EsE
T
t ,

K′0 = 1,

K′i = D|s|K
′′
iD|t|,

K′′i = λ2m(S�K′i−1),

ki =
∑
j,k

λ2m(S�K′ijk),

k(s, t) = µTk,

where Es and Et are matrices of symbol embeddings for each string and � is the Hadamard (element-wise)
product.

From the vectorised equations we can see that the gradient with respect to µ is simply k, i.e., the vector
of kernel evaluations for each subsequence length. For λm we obtain the equations

∂K′0
∂λm

= 0,

∂K′i
∂λm

= D|s|
∂K′′i
∂λm

D|t|,

∂K′′i
∂λm

= 2λm(S�K′i−1) + λ2m

(
S� ∂Ki−1

∂λm

)
,

∂ki
∂λm

= 2λm
∑
j,k

(S�K′ijk) + λ2m

(
S�

∂Kijk

∂λm

)
,

∂k

∂λm
= µT ∂k

∂λm
.

And for λg we first define

∂D`

∂λg
=



0 0 λ0g 2λ1g 3λ2g . . . (|`| − 2)λ
|`|−3
g

0 0 0 λ0g 2λ1g . . . (|`| − 3)λ
|`|−4
g

0 0 0 0 λ0g . . . (|`| − 4)λ
|`|−5
g

...
...

...
...

...
. . .

...
0 0 0 0 0 . . . λ0g
0 0 0 0 0 . . . 0


.

2

These matrices are then plugged into the equations

∂K′0
∂λg

= 0,

∂K′i
∂λg

=
∂D|s|

∂λg
K′′iD|t| +D|s|

∂K′′i
∂λg

D|t| +D|s|K
′′
i

∂D|t|

∂λg
,

∂K′′i
∂λg

= λ2m

(
S�

∂K′i−1
∂λg

)
,

∂ki
∂λg

= λ2m
∑
j,k

(
S�

∂K′ijk
∂λg

)
,

∂k

∂λg
= µT ∂k

∂λg
.

Notice that many terms in these equations are shared with the main kernel calculation. Our implemen-
tation use this fact to improve performance by calculating the kernel and its gradients in a single pass.

References

[Cancedda et al., 2003] Cancedda, N., Gaussier, E., Goutte, C., and Renders, J.-M. (2003). Word-Sequence
Kernels. The Journal of Machine Learning Research, 3:1059–1082.

[Lodhi et al., 2002] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text
Classification using String Kernels. The Journal of Machine Learning Research, 2:419–444.

3

