Supplementary Material for
Image-Grounded Conversations:
Multimodal Context for Natural Question and Response Generation
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Oh my gosh, i’m so
buying this shirt.
Where did you see
this for sale?

Midwest sports

I found a cawaii
bird.

Are you going to
collect some feath-
ers?

There are so many
crows here I'd be
surprised if I never
found one.

Stocking up!!

Ayee!  what the
prices looking like?

Only like 10-20%
off.I think I'm
gonna wait a little
longer.

Only reason I come
to carnival.

Oh my God. How
the hell do you
even eat that?

They are the great-
est things ever
chan. I could eat 5!

Table 1: Example conversations in IGCryier-
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Figure 1: Sunburst visualization of distributions of n-gram sequences (with n < 6) in questions in VQG,
IGCrvitter, and IGCcrowd. IGCrwiter 18 the most diverse set, with the lighter-colored part of the circle
indicating sequences with less than 0.1% representation in the dataset.
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Figure 2: Comparison of IGC questions with VQG
(Mostafazadeh et al., 2016) and VQA (Antol et al.,
2015) questions in terms of vocabulary size, per-
centage of abstract terms, and inter-annotation tex-
tual similarity. The COCO (Lin et al., 2014) im-
age captioning dataset is also included as a point
of reference. The IGCryiqer dataset has by far the
largest vocabulary, making it a more challenging
dataset for training purposes. The IGCcyowd, fol-
lowed in order by IGCryiyer, €xhibit the highest
ratio of abstract to concrete terms. Broadly, ab-
stract terms refer to intangibles, such as concepts,
qualities, and feelings, whereas concrete terms re-
fer to things that can be experienced with the five
senses. Conversational content may often involve
more abstract concepts than captions or questions
directly targeting visible image content.

The right-hand plot in compares the inter-
annotation textual similarity of our IGCcyowg ques-
tions using a smoothed BLEU metric (Lin and
Och, 2004). Contextually grounded questions
of IGCcrowd are competitive with VQG in inter-
annotation similarity.
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