A Extension to Complex SQL

Table 8 shows the extended lexicon entries and grammar rules in NLG for applying our MISP-SQL agent to generate more complex SQL queries, such as those on Spider (Yu et al., 2018c). In this dataset, a SQL query can associate with multiple tables. Therefore, we name a column by combining the column name with its table name (i.e., "col" in table "tab" \rightarrow CoL[col (table tab)]). For simplicity, we omit "(table tab)" when referring to a column col in the grammar.

B Simulation Evaluation Results

The complete simulation experiment results of MISP-SQL agents (based on SQLNet and SQLova) are shown in Table 6 & 7.

C Error Detector Comparison

As a supplementary experiment to Figure 4, in this section, we show the performance of different error detectors under the same average number of questions ("target budget"). Specifically, for each base semantic parser and each kind of error detector, we tune its decision threshold (i.e., p^* and s^*) such that the resulting average number of questions ("actual budget") is as close to the target as possible. In practice, we relax the actual budget to be within ± 0.015 of the target budget, which empirically leads to merely negligible variance. The results are shown in Table 9-10 for SQLNet and Table 11-12 for SQLova.

		SQLNe	t
System	Acc _{qm}	Accex	Avg. #q
no interaction	0.615	0.681	N/A
MISP-SQL ^{Unlimit10}	0.932	0.948	7.445
MISP-SQL ^{Unlimit3}	0.870	0.900	7.052
$MISP-SQL^{p^*=0.95}$	0.782	0.824	1.713
$MISP-SQL^{p^*=0.8}$	0.729	0.779	1.104
MISP-SQL ^{p*=0.5}	0.661	0.722	0.421
MISP-SQL ^{s*=0.01}	0.796	0.845	2.106
MISP-SQL ^{s*=0.05}	0.725	0.786	1.348
MISP-SQL ^{s*=0.1}	0.695	0.758	1.009
MISP-SQL ^{s*=0.2}	0.650	0.714	0.413

Table 6: Simulation evaluation of MISP-SQL (basedon SQLNet) on WikiSQL Test set.

		SQLov	a
System	Acc _{qm}	Accex	Avg. #q
no interaction	0.797	0.853	N/A
MISP-SQL ^{Unlimit10}	0.985	0.991	6.591
MISP-SQL ^{Unlimit3}	0.955	0.974	6.515
MISP-SQL ^{p*=0.95}	0.912	0.939	0.773
$MISP-SQL^{p^*=0.8}$	0.880	0.914	0.488
MISP-SQL $^{p^*=0.5}$	0.835	0.879	0.209
MISP-SQL ^{s*=0.01}	0.913	0.942	0.893
MISP-SQL ^{s*=0.03}	0.866	0.912	0.515
MISP-SQL ^{s*=0.05}	0.840	0.892	0.333
$MISP-SQL^{s^*=0.07}$	0.825	0.880	0.216

Table 7: Simulation evaluation of MISP-SQL (based on SQLova) on WikiSQL Test set.

is greater than (or equivalent to) equals to is less than (or equivalent to) does not equal to $\rightarrow OP[>(=) = <(=) !=]$
is IN is NOT IN follows a pattern likelis between $\rightarrow OP[in not in]ikelbetween]$

	To nows a patient like is between $\rightarrow OP[11]$	or Tulttkelpermeen]
sum of values in average value in a	number of minimum value in maximum value	$in \rightarrow AGG[sum avg count min max]$

in descending order (and limited to top N) in ascending order (and limited to top N) \rightarrow ORDER[desc(limit N) |asc(limit N)]

	[Grammar]
(D-1)	
(R1)	"col" in table "tab" \rightarrow COL[col (table tab)]
(R2)	Does the system need to return information about $Col[col] ? \rightarrow Q[col SELECT agg? col]$
(R3)	Does the system need to return AGG[agg] COL[col] ? \rightarrow Q[agg SELECT agg col]
(R4)	Does the system need to return a value <u>after</u> any mathematical calculations on $CoL[col] ? \rightarrow Q[agg=None SELECT agg col]$
(R5)	Does the system need to consider any conditions about $CoL[col] ? \rightarrow Q[col WHERE col op val]$
(R6)	The system considers the following condition: COL[col] OP[op] a given literal value. Is this condition correct? \rightarrow
	Q[terminal] WHERE col op terminal]
(R7)	The system considers the following condition: $CoL[col] OP[op]$ a value to be calculated. Is this condition correct? \rightarrow
	$Q[root WHERE \ col \ op \ root]$
(R8)	Do the conditions about $CoL[col_i]$ and $CoL[col_j]$ hold at the same time? $\rightarrow Q[AND WHERE \ col_i \ \ AND \ col_j \]$
(R9)	Do the conditions about $CoL[col_i]$ and $CoL[col_j]$ hold alternatively? $\rightarrow Q[OR WHERE col_i OR col_j]$
(R10)	Does the system need to group items in table tab based on $CoL[col]$ before doing any mathematical calculations? \rightarrow
	Q[col GROUP BY col]
(R11)	Given that the system groups items in table tab^g based on $CoL[col^g]$ before doing any mathematical calculations,
	does the system need to consider any conditions about $CoL[col] ? \rightarrow Q[col] GROUP BY col^g HAVING agg? col]$
(R12)	Given that the system groups items in table tab^g based on $CoL[col^g]$ before doing any mathematical calculations,
	does the system need to consider any conditions about AGG[agg] CoL[col] ? \rightarrow Q[agg GROUP BY col ^g HAVING agg col]
(R13)	Given that the system groups items in table tab^g based on $Col[col^g]$ before doing any mathematical calculations, does the system need to
. ,	consider a value after any mathematical calculations on $CoL[col] ? \rightarrow Q[agg=None GROUP BY col^g HAVING agg col]$
(R14)	The system groups items in table tab^g based on $CoL[col^g]$ before doing any mathematical calculations, then considers the following
· /	condition: COL[col] OP[op] a value. Is this condition correct? $\rightarrow Q[op GROUP BY col^g HAVING agq? col op val]$
(R15)	Given that the system groups items in table tab^g based on $CoL[col^g]$ before doing any mathematical calculations, does it need to
· /	consider any conditions? $\rightarrow Q$ [NONE_HAVING GROUP BY col^g NONE_HAVING]
(R16)	Does the system need to order results based on COL[col] ? \rightarrow Q[col] ORDER BY agg? col]
(R17)	Does the system need to order results based on AGG[agq] COL[col]? \rightarrow O[aqq ORDER BY agg col]
(R18)	Does the system need to order results based on a value after any mathematical calculations on $Col[col] ? \rightarrow$
(1110)	Q[agg=None ORDER BY agg col]
(R19)	Given that the system orders the results based on (AGG[agg]) CoL[col], does it need to be ORDER[od] ? \rightarrow
()	Q[od ORDER BY agg? col od]

Table 8: Extended lexicon and grammar for MISP-SQL NLG module to handle complex SQL on Spider.

Avg. #q	Probability-based		Dropou	t-based
	Acc _{qm}	Accex	Acc _{qm}	Accex
0.5	0.672	0.732	0.663	0.726
1.0	0.725	0.775	0.706	0.765
1.5	0.778	0.820	0.749	0.809
2.0	0.812	0.848	0.796	0.845

Table 9: Comparison of error detectors for SQLNet with a target average number of questions on WikiSQL Dev set.

Avg. #q	Probability-based		Dropout-based	
	Acc _{qm}	Accex	Acc _{qm}	Accex
0.2	0.844	0.885	0.829	0.881
0.4	0.876	0.910	0.856	0.905
0.6	0.902	0.932	0.887	0.927
0.8	0.921	0.947	0.913	0.941

Table 11: Comparison of error detectors for SQLova with a target average number of questions on WikiSQL Dev set.

Avg. #q	Probability-based		Dropou	t-based
	Acc _{qm}	Accex	Acc _{qm}	Accex
0.5	0.669	0.729	0.656	0.720
1.0	0.722	0.773	0.695	0.758
1.5	0.765	0.810	0.740	0.801
2.0	0.805	0.844	0.790	0.842

Avg. #q	Probability-based		Dropout-based	
	Acc _{qm}	Accex	Acc _{qm}	Accex
0.2	0.832	0.877	0.823	0.878
0.4	0.865	0.902	0.851	0.901
0.6	0.895	0.926	0.881	0.922
0.8	0.915	0.941	0.904	0.936

Table 10: Comparison of error detectors for SQLNet with a target average number of questions on WikiSQL Test set.

Table 12: Comparison of error detectors for SQLova with a target average number of questions on WikiSQL Test set.