A Supplemental Material

A.1 Scaling properties of power objectives

The scaling properties of both « and 3-divergence,
shown in Table 1, imply that if we do not enforce
the scale of the model to be 1 by normalizing it,
the model will be unable to learn. Indeed, we can
rewrite D, (pp||exp (sg)) as
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That makes the objective possible to minimize by
simply minimizing Zy(x)Vx € X — which does
not imply any learning from the data. It is also the
case with Dg(pp|lexp (sp)):
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However, it is easy to derive that it is not the case
for the y-divergence:
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A.2 NCE as a binary divergence

The divergence D1, (p5|[p§) can be written as:
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We can remove the first term, which is not depen-
dent on 6, and will not intervene in the objective
function. If we do the same with the divergence
Drr(1 = p$||1 — p§) and add them, we obtain
the following:

_ po(ylz) o Po(ylz)
(m)ezzcxy <p7>(i‘/|$) + kpn(y) to po(ylz) + kpn(y)
kpn(y) 0 kpn(y) )
po(ylz) + Ekpn(y)  po(ylx) + kpn(y)

With NCE, we consider that examples are coming
from the mixture k%&—l pp+ ﬁpn, instead of being
uniformly spread, which transforms the objective
into:
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We can then rewrite it as a sum of expectations:
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That becomes the NCE objective once we approx-
imate the second expectation over k samples:
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We should note that minimizing the NCE ob-
jective is then equivalent to minimizing both a f-
divergence and a Bregman divergence. For exam-
ple, by making a variable change between pec and



Py, we can circle back to writing the NCE objec-
tive as a Bregman divergence Dy(pp||py), with
¢(x) = zlogz — (1 + z)log(l + x), as shown

in Gutmann and Hirayama (2011).
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A.3 Objective-specific ‘perplexity’

See Figure 5. We can observe that the behavior
of the objective-specific counterparts to perplexity

closely mirrors it, even when the values are quite

distant.
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Figure 5: Validation results by epoch obtained on the PTB with the exact objectives , derived from MLE, during
training. We give the validation perplexity (dotted gray) and the ‘counterpart’ to perplexity corresponding to the
training objective (in color). Each color corresponds to a different objective, and we use different shades to indicate
that changing the value of the power parameter makes the tracked values different.

A.4 Complete sampling-based objectives

See Table 6.

A.5 Detailed performance of sampling

based-objectives
See Figures 6,7,8 and 9.
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Table 6: Complete objectives of power generalizations of the Approximated Softmax and Noise Contrastive Esti-
mation objective functions, based on a, 3, and -y divergences. All the samples (¢;)¥_, are drawn from the auxiliary
distribution p,,.
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Figure 6: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the AS objective with a-divergences (top), -divergences (middle) and ~y-divergences (bottom) on the PTB.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 7: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the NCE objective with a-divergences (top), 5-divergences (middle) and y-divergences (bottom) on the PTB.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 8: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the AS objective with a-divergences (top), B-divergences (middle) and ~-divergences (bottom) on the WT2.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 9: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the NCE objective with a-divergences (top), S-divergences (middle) and y-divergences (bottom) on the WT?2.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).



