Enhancing Variational Autoencoders with Mutual Information Neural Estimation for Text Generation

1 Appendix

We define the variational joint distribution over \mathbf{x} and \mathbf{z} as:

$$q_{\phi}(\mathbf{x}, \mathbf{z}) = \frac{e^{f_{\psi}(\mathbf{x}, \mathbf{z})}}{Z_{\psi}} q(\mathbf{x}) q_{\phi}(\mathbf{z})$$
(1)

where $f_{\psi}(\mathbf{x}, \mathbf{z})$ is an energy function with parameters ψ and the partition function Z_{ψ} is defined as $\mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}[e^{f_{\psi}(\mathbf{x},\mathbf{z})}]$. In particular, $f_{\psi}(\mathbf{x}, \mathbf{z})$ is approximated by neural networks.

The lower bound on the mutual information $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ is given by:

$$\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] = \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})} \left[\log \frac{q_{\phi}(\mathbf{x}, \mathbf{z})}{q(\mathbf{x})q_{\phi}(\mathbf{z})} \right] \\
= \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})} [f_{\psi}(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})} [\log Z_{\psi}] \\
= \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})} [f_{\psi}(\mathbf{x}, \mathbf{z})] - \log Z_{\psi} \\
= \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})} [f_{\psi}(\mathbf{x}, \mathbf{z})] - \log [\mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})} \left[e^{f_{\psi}(\mathbf{x}, \mathbf{z})} \right] \right] \\
\geq \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})} [f_{\psi}(\mathbf{x}, \mathbf{z})] - \xi \cdot \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})} \left[e^{f_{\psi}(\mathbf{x}, \mathbf{z})} \right] + \log(\xi) + 1 \quad (2)$$

Proposition 1. With the fixed ϕ and ξ , the optimal energy function $f_{\psi}^*(\mathbf{x}, \mathbf{z})$ according to the objective in Eq.(2) is given by

$$f_{\psi}^{*}(\mathbf{x}, \mathbf{z}) = \operatorname{argmax}_{f_{\psi}(\mathbf{x}, \mathbf{z})} \left\{ \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})}[f_{\psi}(\mathbf{x}, \mathbf{z})] - \xi \cdot \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}[e^{f_{\psi}(\mathbf{x}, \mathbf{z})}] \right\}$$
$$\nabla_{\psi} f_{\psi}(\mathbf{x}, \mathbf{z}) = q_{\phi}(\mathbf{x}, \mathbf{z}) - \xi \cdot [q(\mathbf{x})q_{\phi}(\mathbf{z})]e^{f_{\psi}(\mathbf{x}, \mathbf{z})} = 0$$
$$f_{\psi}^{*}(\mathbf{x}, \mathbf{z}) = \log q_{\phi}(\mathbf{x}, \mathbf{z}) - \log[q(\mathbf{x})q_{\phi}(\mathbf{z})] - \log(\xi)$$
(3)

When $\xi = 1$, $f_{\psi}^*(\mathbf{x}, \mathbf{z})$ becomes essentially pointwise mutual information. This means that the energy function assigns zero probability to the samples independently from $q(\mathbf{x})q_{\phi}(\mathbf{z})$.

With the optimal function $f_{\psi}^{*}(\mathbf{x}, \mathbf{z})$ defined, the max-max objective in Equa-

tion (2) can be reformulated as:

$$C(\phi, \psi^{*}) = \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})}[f_{\psi}^{*}(\mathbf{x}, \mathbf{z})] - \xi \cdot \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}\left[e^{f_{\psi}^{*}(\mathbf{x}, \mathbf{z})}\right] + \log(\xi) + 1$$

$$= \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})}\left[\log\frac{q_{\phi}(\mathbf{x}, \mathbf{z})}{\xi \cdot q(\mathbf{x})q_{\phi}(\mathbf{z})}\right] - \xi \cdot \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}\left[\frac{q_{\phi}(\mathbf{x}, \mathbf{z})}{\xi \cdot q(\mathbf{x})q_{\phi}(\mathbf{z})}\right] + \log(\xi) + 1$$

$$= -\log(\xi) + \mathbb{E}_{q_{\phi}(\mathbf{x}, \mathbf{z})}\left[\log\frac{q_{\phi}(\mathbf{x}, \mathbf{z})}{q(\mathbf{x})q_{\phi}(\mathbf{z})}\right] - \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}\left[\frac{q_{\phi}(\mathbf{x}, \mathbf{z})}{q(\mathbf{x})q_{\phi}(\mathbf{z})}\right] + \log(\xi) + 1$$

$$= \mathrm{KL}[q_{\phi}(\mathbf{x}, \mathbf{z})||q(\mathbf{x})q_{\phi}(\mathbf{z})] \qquad (4)$$

Thus, maximizing the lower bound on the MI with respect to ϕ and ψ is equivalent to maximizing the KL divergence between the joint distribution and two marginal distributions.

We can then compute the gradients of Eq.(4) with respect to ϕ and θ for the optimization. While it is easy to compute the gradient with respect to θ , the gradient with respect to ϕ is hard to compute since $C(\phi, \psi^*)$ itself depends on ϕ . Actually, when the function $f_{\psi}(\mathbf{x}, \mathbf{z})$ is optimal, the expectation of the gradients becomes zero, that is

$$\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}[\nabla_{\phi}f_{\psi}^{*}(\mathbf{x},\mathbf{z})] - \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}\left[\nabla_{\phi}e^{f_{\psi}^{*}(\mathbf{x},\mathbf{z})}\right] = 0$$
(5)

Thus, we can ignore gradients in the optimization when $f_{\psi}(\mathbf{x}, \mathbf{z})$ is optimal.

Proof.

$$\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}[\nabla_{\phi}f_{\psi}^{*}(\mathbf{x},\mathbf{z})] = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}[\nabla_{\phi}\log q_{\phi}(\mathbf{z}|\mathbf{x})]}_{\circledast} - \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}[\nabla_{\phi}\log q_{\phi}(\mathbf{z})]}_{\circledcirc}$$
(6)

For the \circledast part,

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\nabla_{\phi} \log q_{\phi}(\mathbf{z}|\mathbf{x})] = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\frac{1}{q_{\phi}(\mathbf{z}|\mathbf{x})} \nabla_{\phi} q_{\phi}(\mathbf{z}|\mathbf{x}) \right] \\
= \int_{\mathbf{z}} \nabla_{\phi} q_{\phi}(\mathbf{z}|\mathbf{x}) \\
= 0$$
(7)

For the \odot part,

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\nabla_{\phi}\log q_{\phi}(\mathbf{z})] = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}\left[\frac{1}{q_{\phi}(\mathbf{z})}\nabla_{\phi}q_{\phi}(\mathbf{z})\right]$$
(8)

$$\mathbb{E}_{q_{\phi}(\mathbf{z})}[\nabla_{\phi}e^{f_{\psi}^{*}(\mathbf{x},\mathbf{z})}] = \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[\nabla_{\phi}\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z})}\right] \\
= \mathbb{E}_{q_{\phi}(\mathbf{z})}\left[\frac{\nabla_{\phi}q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z})} - \frac{q_{\phi}(\mathbf{z}|\mathbf{x})\nabla_{\phi}q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})^{2}}\right] \\
= -\mathbb{E}_{q_{\phi}(\mathbf{z})}\left[\frac{q_{\phi}(\mathbf{z}|\mathbf{x})\nabla_{\phi}q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})^{2}}\right] \\
= -\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}\left[\frac{1}{q_{\phi}(\mathbf{z})}\nabla_{\phi}q_{\phi}(\mathbf{z})\right]$$
(9)

Therefore,

$$\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}[\nabla_{\phi}f_{\psi}^{*}(\mathbf{x},\mathbf{z})] - \mathbb{E}_{q(\mathbf{x})q_{\phi}(\mathbf{z})}[\nabla_{\phi}e^{f_{\psi}^{*}(\mathbf{x},\mathbf{z})}] = 0$$
(10)