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A Model Details

A.1 Word Embedding

Given an user question sentence U , a tokenizing
method (e.g., punctuation or wordpiece tokenizer
(Wu et al., 2016)) is applied to the sentence for
a list of tokens, i.e., U = [u1, · · · ,un−1,u

′],
where ui or u′ is an one-hot vector whose di-
mension equals to distinct tokens N in vocabu-
lary, and n is the length of U . Note that a spe-
cial token u′ is appended to the tokenized sen-
tence, corresponding to the token [CTX]. Then,
randomly initialized or pre-trained (Mikolov et al.,
2013; Pennington et al., 2014) embeddings are ap-
plied to U and thus transform discrete tokens to
a sequence of low-dimension distributed embed-
dings, i.e., X = [x1,x2, ...,xn] ∈ Rde×n where
de is embedding size. This process is formulated
as X = W (enc)U where W (enc) ∈ Rde×N is
the trainable word embedding weight matrix.

A.2 Pointer-equipped Semantic Parsing

A.2.1 Encoder of Seq2seq Model
To model contextual dependencies between to-
kens and generate context-aware representations,
we leverage stacked two-layer multi-head atten-
tion mechanism with additive positional encoding
(Vaswani et al., 2017). The stacking scheme is
identical to that in (Vaswani et al., 2017): two-
layer feed forward network with activation func-
tion (FFN) follows each multi-head attention, and
residual connection (He et al., 2016) with layer
normalization (Lei Ba et al., 2016) is applied. This
process is briefly denoted as

H = [h1, · · · ,hn],X′∈Rde×n,where, (1)
2×[X′ = FFN(MultiHead(X′,X′,X′))], (2)

X′ = X +W (pe), (3)
∗ Work done while the author was an intern at Microsoft.

where H is a sequence of contextual embeddings,
W (pe) ∈ Rde×n is learnable weights of PE and
the three arguments for MultiHead are value, key,
query for an attention mechanism.

A.2.2 Decoder of Seq2seq Model
Similar to token embedding in encoder (§A.1),
we embed the j-th decoder input token as zj
via a randomly initialized embedding weight ma-
trix W (dec) ∈ Rde×|V(dec)|. We use Z =
[z1, · · · , zm] ∈ Rde×m to represent all tokens in
a gold logical form sketch, where m denotes the
length of gold sketch.

The basic structure of proposed logical form de-
coder is same as that in the original Transformer
(Vaswani et al., 2017) except only two stacked
layers are used here. Each layer of the decoder
is bottom-up comprised of self-attention with for-
ward mask, cross attention between decoder and
encoder and FFN, which we briefly formulate as

S = [s1, · · · ,sm],Z∈Rde×m,where, (4)
2×[Z = FFN(MultiHead( (5)

H,H,MultiHeadmask(Z,Z,Z)))].

where S is a sequence of decoding hidden states.

A.3 Multi-task Learning

We propose to employ a multi-task learning strat-
egy to learn a entity detection (ED) model jointly
with the pointer-equipped semantic parsing model
because the supervision information from ED, i.e,
IOB tagging, can provide all entities spans in the
input question, which thus results in better perfor-
mance than separate learning.

The reasons why we use a multi-task learning
to jointly learn the semantic parsing model and
ED rather than directly equip the semantic pars-
ing model with span prediction (Seo et al., 2017)



are that 1) the supervision information of the en-
tities not existing in the gold logical form but ap-
pearing in the question is lost; 2) deeper network
is required when predicting the end index of the
target as shown in (Seo et al., 2017) and 3) the
well-solved entity detection method can provide
correction for the pointer even with slight devi-
ation during inference phrase, in contrast, span-
based model usually leads to error aggregation.

A.4 Inverted Index

Based on each entity text in Wikidata, we tra-
versed its substring whose length is not less than
that of its full text minus a threshold, and then,
we separately calculated Levenshtein Distance be-
tween the full text and each substring as a score for
the map from the substring to corresponding full
text. Since multiple entities could generate iden-
tical substring, we kept maps with largest scores
and used the maps to build a dictionary for future
queries.

B Supplemental Experiment Results

B.1 Precision and Recall for Main Paper

Since we report the F1 score for brief demon-
stration in the main paper, in this section, we re-
port the corresponding recall and precision de-
tailedly: 1) as shown in Table 7, the results of the
proposed model compared with baselines are pre-
sented; 2) as shown in Table 8, the ablation study
is presented; and 3) as shown in Table 9, the per-
formance improvement comparison after sophisti-
cated strategies applied is provided.

B.2 Comparison to D2A

Question Type D2A Ours
Simple Question (Direct) 2.6 1.5
Clarification 2.7 1.4
Simple Question (Coreferenced) 2.7 1.4
Quantitative Reasoning (Count) (All) 2.9 1.5
Logical Reasoning (All) 2.7 1.6
Simple Question (Ellipsis) 2.6 1.6
Verification (Boolean) (All) 2.8 1.4
Quantitative Reasoning (All) 2.7 1.4
Comparative Reasoning (Count) (All) 2.8 1.4
Comparative Reasoning (All) 3.0 1.4
Overall 2.9 1.5

Table 1: The averaged number of entity candidates
from entity linking.

To further demonstrate that the proposed model
is superior to the previous D2A model in term of

entity linking and logical form generation, we con-
duct the following comparisons.

First, as shown in Table 1, the average number
of entity candidates in test set from entity link-
ing of the proposed model is 2× less than that
of D2A, which means the proposed approach pro-
vides the downstream subtask with more accurate
entity linking results.

Question Type D2A Ours
Simple Question (Direct) 0.8960 0.9520
Clarification 0.8281 0.9323
Simple Question (Coreferenced) 0.8177 0.8952
Quantitative Reasoning (Count) (All) 0.8385 0.9581
Logical Reasoning (All) 0.8726 0.9791
Simple Question (Ellipsis) 0.9364 0.9474
Verification (Boolean) (All) 0.7448 0.9637
Quantitative Reasoning (All) 0.9304 0.9832
Comparative Reasoning (Count) (All) 0.8165 0.9863
Comparative Reasoning (All) 0.8312 0.9727
Overall 0.8499 0.9475

Table 2: Ratio of non-empty logical form.

Second, we compare the proposed model with
D2A in term of logical form generation where
the logical form would be empty due to timeout
or illegal logical forms during beam search. As
demonstrated in Table 2, the proposed model ob-
tains less ratio of empty logical form than D2A.

Question Type D2A Ours +BERT
Simple Question (Direct) 0.7967 0.8519 0.8664
Clarification 0.2385 0.6408 0.6414
Simple Question (Coreferenced) 0.5341 0.7234 0.7469
Quantitative Reasoning (Count) (All) 0.5000 0.6947 0.7004
Logical Reasoning (All) 0.3692 0.0791 0.3196
Simple Question (Ellipsis) 0.7533 0.8843 0.8878
Verification (Boolean) (All) 0.1757 0.5278 0.5854
Quantitative Reasoning (All) 0.8913 0.9792 0.9911
Comparative Reasoning (Count) (All) 0.3235 0.8924 0.9121
Comparative Reasoning (All) 0.2483 0.9053 0.9242
Overall 0.5522 0.7167 0.7546

Table 3: accuracy of entities in predicted logical form.

Third, we list the accuracies of the entities ap-
pearing in the predicted logical form for D2A, our
standard approach and BERT-based model, which
verifies that the proposed approach can signifi-
cantly improve the performance of entity linking
during entity detection and entity prediction dur-
ing logical form generation. Note that the analysis
for performance reduction of Logical Reasoning
(All) is elaborated in the main paper.

B.3 Multi-task Learning

The multi-task learning framework increases the
accuracy of logical form generation while keeping



a satisfactory performance of entity detection, and
consequently improves the final question answer-
ing task via logical form execution. In this sec-
tion, we detailedly list all metrics to measure the
performance for both two subtasks in the case of
our approach with or without multi-task learning.
To evaluate the logical form generation, we also
apply BFS method to test set for gold logical form
(inevitably existing spurious ones).

Question Type Ours w/o Multi
Comparative Reasoning (All) 0.1885 0.1885
Logical Reasoning (All) 0.6256 0.6188
Quantitative Reasoning (All) 0.6403 0.6188
Simple Question (Coreferenced) 0.8721 0.8663
Simple Question (Direct) 0.8772 0.8715
Simple Question (Ellipsis) 0.9073 0.9034
Comparative Reasoning (Count) (All) 0.1601 0.1495
Quantitative Reasoning (Count) (All) 0.5711 0.5564
Verification (Boolean) (All) 0.7638 0.7565
Overall 0.7940 0.7872

Table 4: Sketch accuracy for logical form generation.

Ours w/o Multi

IOB Tagging

Accuracy 0.9967 0.9975
F1 Score 0.9941 0.9955
Precision 0.9960 0.9972
Recall 0.9923 0.9938

Entity Type

Accuracy 0.9822 0.9844
F1 Score 0.9674 0.9717
Precision 0.9958 0.9971
Recall 0.9407 0.9475

Table 5: Performance of IOB tagging and entity type
prediction.

As shown in Table 4 and 5, the model with
multi-task learning can outperform that without
multi-task learning in term of logical form genera-
tion from semantic parsing model. And, although
∼ 0.002 performance reduction is observed for en-
tity detection subtask, the performance of entity
detection and linking is good enough for the down-
stream task, which thus poses a very minor effect
on the performance of KB-QA.

B.4 BFS Success Ratio

Given the final answer to a question as well as
gold entities, predicates and types, we conduct a
BFS method to search the gold logical form, which
may result in search failure due to limited time and
buffer. We list the success ratio of BFS for training
data of CSQA in Table 6.

Question Type #Example Ratio
Simple Question (Direct) 274527 0.96
Simple Question (Ellipsis) 34549 0.97
Quantitative Reasoning (All) 58976 0.46
Quantitative Reasoning (Count) (All) 114074 0.67
Logical Reasoning (All) 66161 0.61
Simple Question (Coreferenced) 173765 0.86
Verification (Boolean) (All) 77167 0.75
Comparative Reasoning (Count) (All) 59557 0.37
Comparative Reasoning (All) 57343 0.32

Table 6: The BFS search success ratio w.r.t. difference
question type.

C Supplemental Analysis

We also observe that the improvement of MaSP
over D2A for some question types is relatively
small especially for logical reasoning questions.
Furthermore, for logical reasoning, we find that
the accuracy of entities in final logical forms is
only 8%, and there are usually two distinct enti-
ties needed to produce a correct logical form. This
means the presented shallow network, i.e., two-
layer multi-head attention, cannot handle such
complex cases. We study a case here for bet-
ter understanding. Given, “Which diseases are a
sign of lead poisoning or pentachlorophenol expo-
sure?”, D2A produces “(union (find {lead poison-
ing}, symptoms), (pe...ol exposure))” where enti-
ties are correct but operator is wrong, our approach
produces “(union (find {pe...ol exposure}, symp-
toms), (union (find {pe...ol exposure}, symp-
toms))” where the entities are wrong, while our
approach plus BERT (Devlin et al., 2018) as
encoder can produce correct logical form that
is “(union (find {pe...ol exposure}, symptoms),
(union (find {lead poisoning}, symptoms))”.
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Methods HRED+KVmem D2A (Baseline) Our Approach
Question Type #Example Recall Precision Recall Precision Recall Precision
Overall - 18.40% 6.30% 66.83% 66.57% 78.07% 80.48%
Clarification 12k 25.09% 12.13% 37.24% 33.97% 84.18% 77.66%
Comparative Reasoning (All) 15k 2.11% 4.97% 44.14% 54.68% 59.83% 81.20%
Logical Reasoning (All) 22k 15.11% 5.75% 65.82% 68.86% 61.92% 78.00%
Quantitative Reasoning (All) 9k 0.91% 1.01% 52.74% 60.63% 69.14% 79.02%
Simple Question (Coreferenced) 55k 12.67% 5.09% 58.47% 56.94% 76.94% 76.01%
Simple Question (Direct) 82k 33.30% 8.58% 79.50% 77.37% 86.09% 84.29%
Simple Question (Ellipsis) 10k 17.30% 6.98% 84.67% 77.90% 85.50% 82.03%
Question Type #Example Accuracy Accuracy Accuracy
Verification (Boolean) 27k 21.04% 45.05% 60.63%
Quantitative Reasoning (Count) 24k 12.13% 40.94% 43.39%
Comparative Reasoning (Count) 15k 8.67% 17.78% 22.26%

Table 7: Results of comparisons for KB-QA with baselines.

Methods Our Approach w/o ET w/o Multi w/o Both
Question Type Recall Precision Recall Precision Recall Precision Recall Precision
Overall 78.07% 80.48% 68.78% 72.15% 75.75% 77.73% 66.75% 69.75%
Clarification 84.18% 77.66% 69.79% 66.32% 70.12% 62.88% 56.96% 52.51%
Comparative Reasoning (All) 59.83% 81.20% 57.48% 78.45% 53.62% 71.06% 50.86% 67.59%
Logical Reasoning (All) 61.92% 78.00% 54.43% 73.73% 61.04% 76.27% 54.16% 73.91%
Quantitative Reasoning (All) 69.14% 79.02% 69.14% 79.02% 60.86% 68.73% 60.86% 68.72%
Simple Question (Coreferenced) 76.94% 76.01 64.92% 64.96% 74.65% 74.06% 63.06% 63.24%
Simple Question (Direct) 86.09% 84.29% 75.87% 74.62% 85.88% 84.01% 75.84% 74.56%
Simple Question (Ellipsis) 85.50% 82.03% 80.12% 76.85% 84.28% 81.11% 78.96% 75.97%
Question Type Accuracy Accuracy Accuracy Accuracy
Verification (Boolean) 60.63% 45.40% 60.43% 45.02%
Quantitative Reasoning (Count) 43.39% 39.70% 37.84% 43.39%
Comparative Reasoning (Count) 22.26% 19.08% 18.24% 22.26%

Table 8: Ablation study. “w/o ET” stands for removing entity type prediction in Entity Detection; “w/o Multi”
stands for learning two subtasks separately in our framework; and “w/o Both” stands for a combination of “w/o
ET” and “w/o Multi”.

Methods Vanilla w/ BERT Larger Beam Size
Question Type Recall Precision Recall Precision Recall Precision
Overall 78.07% 80.48% 79.67% 81.56% 80.39% 82.75%
Clarification 84.18% 77.66% 83.24% 76.01% 86.90% 80.11%
Comparative Reasoning (All) 59.83% 81.20% 58.79% 75.21% 60.25% 81.67%
Logical Reasoning (All) 61.92% 78.00% 72.56% 83.24% 62.16% 78.58%
Quantitative Reasoning (All) 69.14% 79.02% 66.91% 74.35% 69.14% 79.02%
Simple Question (Coreferenced) 76.94% 76.01% 78.05% 77.85% 79.54% 78.52%
Simple Question (Direct) 86.09% 84.29% 86.84% 85.96% 89.26% 87.33%
Simple Question (Ellipsis) 85.50% 82.03% 86.38% 83.32% 88.78% 85.22%
Question Type Accuracy Accuracy Accuracy
Verification (Boolean) 60.63% 63.85% 61.96%
Quantitative Reasoning (Count) 43.39% 47.14% 44.22%
Comparative Reasoning (Count) 22.26% 25.28% 22.70%

Table 9: Comparisons with different experimental settings. “Vanilla” stands for standard settings of our framework.
“w/ BERT” stands for incorporating BERT. “w/ Large Beam” stands for increasing beam search size from 4 to 8.
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