A Supplemental Material

We also evaluate our work using Consecutive Wait (CW) as latency metrics, which measures the average lengths of consecutive wait segments. We also perform experiments on German \leftrightarrow English parallel corpora available from WMT15³. We use newstest-2013 as our dev set and newstest-2015 as our test set.

Fig. 8 show the translation quality on German \leftrightarrow English against AL of different decoding methods. Consistent to the results of Chinese \leftrightarrow English, our proposed speculative beam search gain large performance boost especially on test-time wait-k. Fig. 9 and Fig. 10 use CW as latency metrics. Since both the wait-k and test-time wait-k models use the same fixed policy, the CW latencies of the same k are identical.

Figure 8: Translation quality against AL on English \leftrightarrow German simultaneous translation using waitk model. \Box \Box : conventional beam search only on target tail. \triangle \triangle : speculative beam search. \bigstar \Leftrightarrow :full-sentence (greedy and beam-search).

Figure 9: Translation quality against CW on Chinese \leftrightarrow English simultaneous translation using waitk model.

Figure 10: Translation quality against CW on English \leftrightarrow German simultaneous translation using waitk model.

³http://www.statmt.org/wmt15/translation-task.html