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1 Appendix

1.1 Implementation and Training Details

We implement all Transformer-based models us-
ing Fairseq 1 Pytorch framework.

For all translation tasks, we choose the base
configuration of Transformer with dmodel =
512. During training, we choose Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98. The initial learning rate is 0.0002
with 4000 warm-up steps. The learning rate is
scheduled with the same rule as in (Vaswani et al.,
2017). Each batch on one GPU contains roughly
2000 tokens for IWSLT tasks and 800 tokens for
the WMT En-De task. We train IWSLT tasks us-
ing two 1080Ti GPUs and train WMT task using
8 K80 GPUs. The hyperparameter λ is set to 0.2.
For inference, we use beam search with beam size
5 to generate candidates.

1.2 Dataset Details

We evaluate our model on two small transla-
tion datasets - IWSLT’14 German-English (De-
En) and English-French (En-Fr) (Cettolo et al.,
2015) and a much bigger one - WMT’14 English-
German (En-De).

IWSLT’14 En-De/En-Fr We use the datasets
extracted from IWSLT 2014 machine translation
evaluation campaign (Cettolo et al., 2015), which
consists of 153K/220K training sentence pairs for
En-De/En-Fr tasks. For En-De, we use 7K data
split from the training set as the validation set and
use the concatenation of dev2010, tst2010, tst2011
and tst2012 as the test set, which is widely used
in prior studies (Huang et al., 2018; He et al.,
2018; Bahdanau et al., 2017; Ranzato et al., 2016).
For En-Fr, the tst2014 is taken as the validation
set and tst2015 is used as the test set, which is

1https://github.com/pytorch/fairseq

the same with prior studies (Denkowski and Neu-
big, 2017; Cheng et al., 2018). We also lower-
case the sentences of En-De and En-Fr following
general practice. Before encoding sentences using
sub-word types based on byte-pair encoding (Sen-
nrich et al., 2016), which is a common practice
in NMT, we parse POS tag sequences of the sen-
tences using Stanford Parser (Chen and Manning,
2014). The POS tag sequences produce POS vo-
cabulary of size 32 for both English and French
and 32 for German. Sentences are then encoded
using sub-word types. To make the lengths of
POS tag sequences equal to their corresponding
sub-word sentences, if several sub-words belong
to the same word, they are given the same POS
tag. For IWSLT’14 En-De dataset, we build a En-
glish sub-word vocabulary of size 6632 and a Ger-
man sub-word vocabulary of size 8848. For En-Fr
dataset, we build a English sub-word vocabulary
of size 7172 and a French sub-word vocabulary of
size 8740.

WMT’14 English-German (En-De)
We use the same dataset as (Vaswani et al.,

2017), which consists of 4.5M sentence pairs. We
use the concatenation of newstest2012 and new-
stest2013 as the validation set and newstest2014 as
the test set. Sentences are encoded using byte-pair
encoding with a shared vocabulary of about 40K
sub-word tokens. The method to generate POS tag
sequences is the same, except that we merge some
POS tags of similar meaning to one and get a POS
tag vocabulary of size 16 for both German and En-
glish. This operation reduces computational cost,
and gives us a bigger batch for training.
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