
A Robustness and Effectiveness of GEM

A.1 Robustness Test

We test the robustness of GEM by removing one
non-important stop word in a sentence and com-
puted the similarity between the original sentence
and the one after removal. For example:

• original = ”The student is reading a physics
book”

• removed = ”student is reading a physics
book”

Stop word ”The” is removed. The cosine simi-
larity between embeddings of the two sentences
generated by GEM is 0.998. GEM assigns pretty
similar embeddings for these two sentences even
with the removal of stop words, especially this is a
short sentence with only 7 words. More examples
are:

• original = ”Someone is sitting on the blanket”

• removed = ”Someone is sitting on blanket”

• cosine similarity = 0.981

and

• original = ”A man walks along walkway to
the store”

• removed = ”man walks along walkway to the
store”

• cosine similarity = 0.984

These experiments prove that GEM is robust
against stop words and words order.

A.2 Effectiveness Test

We also demonstrate that GEM assign higher
weights to words with more significant meanings.
Consider the sentence: the stock market closes
lower on Friday, weights assigned by GEM are
[lower: 4.94, stock: 4.93, closes: 4.78, market:
4.62, Friday: 4.51, the: 3.75, on: 3.70]. Again,
GEM emphasizes informative words like lower
and closes, and diminishes stop words like the and
there.

B Proof

The novelty score (↵n), significance score (↵s)
and corpus-wise uniqueness score (↵u) are larger
when a word w has relatively rare appearance in
the corpus and can bring in new and important se-
mantic meaning to the sentence.

Following the section 3 in Arora et al. (2017),
we can use the probability of a word w emitted
from sentence s in a dynamic process to explain
eq. (10) and put this as following Theorem with
its proof provided below.

Theorem 1. Suppose the probability that word
wi is emitted from sentence s is2:

p[wi|cs] / (
exp(hcs,vwii)

Z
+exp(�(↵n+↵s+↵u)))

(12)
where cs is the sentence embedding, Z =P

wi2V exp(hcs,vwii) and V denotes the vocab-
ulary. Then when Z is sufficiently large, the MLE
for cs is:

cs /
X

wi2s
(↵n + ↵s + ↵u)vwi (13)

Proof: According to Equation (12),

p[wi|cs] =
1

N
(
exp(hcs,vwii)

Z
+exp(�(↵n+↵s+↵u)))

(14)
Where N and Z are two partition functions de-
fined as

N = 1 +
X

wi2V
exp(�(↵n(wi) + ↵s(wi) + ↵u(wi)))

Z =
X

wi2V
exp(hcs,vwii)

(15)
The joint probability of sentence s is then

p[s|cs] =
Y

wi2s
p(wi|cs) (16)

To simplify the notation, let ↵ = ↵n + ↵s + ↵u.
It follows that the log likelihood f(wi) of word wi

emitted from sentence s is given by

fwi(cs) = log(
exp(hcs,vwii)

Z
+ e�↵)� log(N)

(17)
2The first term is adapted from Arora et al. (2017), where

words near the sentence vector cs has higher probability to be
generated. The second term is introduced so that words sim-
ilar to the context in the sentence or close to common words
in the corpus are also likely to occur.



rfwi(cs) =
exp(hcs,vwii)vwi

exp(hcs,vwii) + Ze�↵
(18)

By Taylor expansion, we have

fwi(cs) ⇡ fwi(0) +rfwi(0)
Tcs

= constant +
hcs,vwii
Ze�↵ + 1

(19)

Again by Taylor expansion on Z,

1

Ze�↵ + 1
⇡ 1

1 + Z
+

Z

(1 + Z)2
↵

⇡ Z

(1 + Z)2
↵

⇡ 1

1 + Z
↵

(20)

The approximation is based on the assumption
that Z is sufficiently large. It follows that,

fwi(cs) ⇡ constant +
↵

1 + Z
hcs,vwii (21)

Then the maximum log likelihood estimation of
cs is:

cs ⇡
X

wi2s

↵

1 + Z
vwi

/
X

wi2s
(↵n + ↵s + ↵u)vwi

(22)

C Experimental settings

For all experiments, sentences are tokenized us-
ing the NLTK tokenizer (Bird et al., 2009) word-
punct tokenize, and all punctuation is skipped.
f(�j) = �t

j in Equation (7). In the STS bench-
mark dataset, our hyper-parameters are chosen by
conducting parameters search on STSB dev set at
m = 7, h = 17, K = 45, and t = 3. And we use
the same values for all supervised tasks. The inte-
ger interval of parameters search are m 2 [5, 9],
h 2 [8, 20], L 2 [35, 75] (at stride of 5), and
t 2 [1, 5]. In CQA dataset, m and h are changed
to 6 and 15, the correlation term in section 2.4.2 is
changed to oi = kSTdik2 empirically. In super-
vised tasks, same as Arora et al. (2017), we do not
perform principal components in supervised tasks.

D Clarifications on Linear Algebra

D.1 Encode a long sequence of words
We would like to give a clarification on encoding
a long sequence of words, for example, a para-
graph or a article. Specifically, the length n of

the sequence is larger than the dimension d of pre-
trained word vectors in this case. The only part
in GEM relevant to the length of the sequence
n is the coarse embedding in Equation (7). The
SVD of the sentence matrix of the ith sentence is
still S 2 Rd⇥n = [vw1 , . . . ,vwn ] = U⌃V T ,
where now U 2 Rd⇥d, ⌃ 2 Rd⇥n, and V 2
Rn⇥n. Note that the d + 1th column to nth col-
umn in ⌃ are all zero. And Equation (7) becomes
gi =

Pd
j=1 f(�j)U:,j . The rest of the algorithm

works as usual. Also, Gram-Schmidt (GS) pro-
cess is computed in the context window of word
wi, and the length of context window is set to be
2m+1 = 17 in STS benchmark dataset and super-
vise downstream tasks. That is, GS is computed on
17 vectors, and 17 is smaller than the dimension d.
Therefore, GS is always validate in our model, in-
dependent with the length of the sentence.

D.2 Sensitivity to Word Order
Although utilizing Gram-Schmidt process (GS),
GEM is insensitive to the order of words in the
sentence, explained as follows. The new semantic
meaning vector qi computed from doing GS on the
context window matrix Si is independent with the
relative order of first 2m vectors. This is because
in GEM wi (the word we are calculating weights
for) is always shifted to be the last column of Si.
And weighting scheme in GEM only depends on
qi. Therefore, weight scores stay the same for wi.


