
A Models Set-Up

General Settings We used the implementation
of Nematus (Sennrich et al., 2017) for both mod-
els. We trained each architecture (i.e., GRU and
Transformer) three times. For testing, we ensem-
bled the settings which obtained the best results in
the development sets in each training execution for
GRUs, whereas for the Transformer, we selected
the setting which obtained the best result in the re-
spective development set.

Models were trained using stochastic gradient
descent with Adam (Kingma and Ba, 2015) (β1 =
0.9, β2 = 0.98, ε = 10−9) for a maximum of
200,000 updates. They were evaluated on the de-
velopment sets after every 5,000 updates and early
stopping was applied with patience 30 based on
cross-entropy. Encoder, decoder and softmax em-
beddings were tied, whereas decoding was per-
formed with beam search of size 5 to predict se-
quences with length up to 100 tokens.

GRU Settings Bidirectional GRUs with atten-
tion were used as described in Sennrich et al.
(2017). Source and target word embeddings were
300D each, whereas hidden units were 512D. We
applied layer normalization as well as dropout
with a probability of 0.1 in both source and target
word embeddings and 0.2 for hidden units.

Transformer Settings Both encoder and de-
coder consisted of N = 6 identical layers. Word
embeddings and hidden units were 512D each,
whereas the inner dimension of feed-forward sub-
layers were 2048D. The multi-head attention sub-
layers consisted of 8 heads each. Dropout of 0.1
were applied to the sums of word embeddings
and positional encodings, to residual connections,
to the feed-forward sub-layers and to attention
weights. At training, models had 8000 warm-up
steps and label smoothing of 0.1.

Word Segmentation In the lexicalization step
of the pipeline and in the end-to-end architecture,
byte-pair encoding (BPE) (Sennrich et al., 2016)
was used to segment the tokens of the target tem-
plate and text, respectively. The model was trained
to learn 20,000 merge operations with a threshold
of 50 occurrences.

NeuralREG To generate referring expres-
sions in the pipeline architecture, we used the
concatenative-attention version of the NeuralREG
algorithm (Castro Ferreira et al., 2018). We follow

most of the settings in the original paper, except
for the number of training epochs, mini-batches,
dropout, beam search and early stop of the neural
networks, which we respectively set to 60, 80,
0.2, 5 and 10. Another difference is in the input of
the model: while NeuralREG in the original paper
generates referring expressions based on tem-
plates where only the references are delexicalized,
here the algorithm generates referring expressions
based on a template where verbs and determiners
are also delexicalized as previously explained.
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