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A Proof of Theorem 1

Proof. First, we will prove the following equation.

p̃(y) = maxs∈S p̃(s), (1)

where S and y are the output candidates and the
selected output, respectively, in Algorithm 1 with
K(s, s′) = cos(s, s′), and p̃ is the first order Tay-
lor series approximation of the kernel density esti-
mator p based on the von Mises-Fisher kernel.

From the definition of the von Mises-Fisher ker-
nel, we have

p(s) =
1

|S|
∑
s′∈S

Kvmf(s, s
′) (2)

=
1

|S|
∑
s′∈S

Cq(κ) exp(κ cos(s, s
′)) (3)

∝
∑
s′∈S

exp(κ cos(s, s′)), (4)

where Cq(κ) and κ are the normalization constant
and concentration parameter of the von Mises-
Fisher kernel. Using the first order Taylor series
approximation at 0 of exp(x), i.e., exp(x) ≈ 1+x,
we have p̃(s) ∝

∑
s′∈S(1 + κ cos(s, s′)). There-

fore, the definition of y yields

y =
1

|S|
argmax

s∈S

∑
s′∈S

cos(s, s′) (5)

= argmax
s∈S

∑
s′∈S

1 + κ cos(s, s′) (6)

= argmax
s∈S

p̃(s). (7)

This proves Eq. (1).
Next, we consider the following equation.

p(y∗)− p(y) ≤ Cq(κ)κ
2 exp(κ)(σ2 + µ2), (8)

where y∗ is the ideal output that maximizes
the von Mises-Fisher kernel, i.e., y∗ =
argmaxs∈S p(s), and µ and σ2 are the maximum
values of the mean and variance of the cosine sim-
ilarities cos(s, s′) with respect to an output candi-

date s, defined as

µ = max
s∈S

Es′ [cos(s, s
′)] (9)

σ2 = max
s∈S

Vs′ [cos(s, s
′)]. (10)

The Lagrange error bound Rn(x) of the n-th
Taylor series approximation of f(x) is defined as

Rn(x) =
maxx′ f (n+1)(x′)

(n+ 1)!
xn+1. (11)

In our case, the error bound R̃(x) is calculated
for the first order approximation of exp(x), where
x = κ cos(s, s′), and −κ ≤ x ≤ κ, and thus, we
obtain the upper bound as

R̃(x) =
maxx′ exp(x′)

2!
x2 (12)

≤ exp(κ)

2
x2. (13)

Here, we define the approximation error be-
tween p(s) and p̃(s) with respect to an output s
as R′(s). This error can be bounded as follows.

R′(s) = |p(s)− p̃(s)| (14)

≤ 1

|S|
∑
s′∈S

Cq(κ)R̃(κ cos(s, s
′)) (15)

≤ 1

|S|
∑
s′∈S

Cq(κ)
exp(κ)

2
(κ cos(s, s′))2

(16)

= Cq(κ)
κ2 exp(κ)

2

1

|S|
∑
s′∈S

cos2(s, s′)

(17)

= Cq(κ)
κ2 exp(κ)

2
(σ2s + µ2s), (18)

where µs = 1
|S|

∑
s′∈S cos(s, s′), and σ2s =

1
|S|

∑
s′∈S cos2(s, s′)− µ2s.

From the approximation error of p̃(y∗), we ob-
tain the following.

p(y∗)−R′(y∗) ≤ p̃(y∗) (19)



Similarly, from the approximation error of p̃(y),
we obtain the following.

p̃(y) ≤ p(y) +R′(y) (20)

Using the optimality of y with respect to p̃, i.e.,
p̃(y∗) ≤ p̃(y), we can connect the above two in-
equalities as

p(y∗)− p(y) ≤ R′(y∗) +R′(y) (21)

≤ 2max
s∈S

R′(s) (22)

= Cq(κ)κ
2 exp(κ)max

s∈S
(σ2s + µ2s).

(23)
This concludes the theorem.


