
Noise Contrastive Estimation and Negative Sampling for Conditional
Models: Consistency and Statistical Efficiency

Zhuang Ma
University of Pennsylvania∗

zhuangma@wharton.upenn.edu

Michael Collins
Google AI Language and Columbia University†

mjcollins@google.com

Abstract

Noise Contrastive Estimation (NCE) is a pow-
erful parameter estimation method for log-
linear models, which avoids calculation of the
partition function or its derivatives at each
training step, a computationally demanding
step in many cases. It is closely related to
negative sampling methods, now widely used
in NLP. This paper considers NCE-based es-
timation of conditional models. Conditional
models are frequently encountered in practice;
however there has not been a rigorous theo-
retical analysis of NCE in this setting, and we
will argue there are subtle but important ques-
tions when generalizing NCE to the condi-
tional case. In particular, we analyze two vari-
ants of NCE for conditional models: one based
on a classification objective, the other based on
a ranking objective. We show that the ranking-
based variant of NCE gives consistent param-
eter estimates under weaker assumptions than
the classification-based method; we analyze
the statistical efficiency of the ranking-based
and classification-based variants of NCE; fi-
nally we describe experiments on synthetic
data and language modeling showing the ef-
fectiveness and trade-offs of both methods.

1 Introduction

This paper considers parameter estimation in con-
ditional models of the form

p(y|x; θ) =
exp (s(x, y; θ))

Z(x; θ)
(1)

where s(x, y; θ) is the unnormalized score of label
y in conjunction with input x under parameters θ,
Y is a finite set of possible labels, and Z(x; θ) =∑

y∈Y exp (s(x, y; θ)) is the partition function for
input x under parameters θ.

It is hard to overstate the importance of models
of this form in NLP. In log-linear models, includ-
ing both the original work on maximum-entropy
models (Berger et al., 1996), and later work on
conditional random fields (Lafferty et al., 2001),

∗Part of this work done at Google.
†Work done at Google.

the scoring function s(x, y; θ) = θ · f(x, y) where
f(x, y) ∈ Rd is a feature vector, and θ ∈ Rd are
the parameters of the model. In more recent work
on neural networks the function s(x, y; θ) is a non-
linear function. In Word2Vec the scoring function
is s(x, y; θ) = θx · θ′y where y is a word in the
context of word x, and θx ∈ Rd and θ′y ∈ Rd are
“inside” and “outside” word embeddings x and y.

In many NLP applications the set Y is large.
Maximum likelihood estimation (MLE) of the pa-
rameters θ requires calculation of Z(x; θ) or its
derivatives at each training step, thereby requiring
a summation over all members of Y , which can be
computationally expensive. This has led to many
authors considering alternative methods, often re-
ferred to as “negative sampling methods”, where
a modified training objective is used that does not
require summation over Y on each example. In-
stead negative examples are drawn from some dis-
tribution, and a objective function is derived based
on binary classification or ranking. Prominent ex-
amples are the binary objective used in word2vec
((Mikolov et al., 2013), see also (Levy and Gold-
berg, 2014)), and the Noise Contrastive Estima-
tion methods of (Mnih and Teh, 2012; Jozefowicz
et al., 2016) for estimation of language models.

In spite of the centrality of negative sampling
methods, they are arguably not well understood
from a theoretical standpoint. There are clear
connections to noise contrastive estimation (NCE)
(Gutmann and Hyvärinen, 2012), a negative sam-
pling method for parameter estimation in joint
models of the form

p(y) =
exp (s(y; θ))

Z(θ)
; Z(θ) =

∑
y∈Y

exp (s(y; θ))

(2)
However there has not been a rigorous theoretical
analysis of NCE in the estimation of conditional
models of the form in Eq. 1, and we will argue
there are subtle but important questions when gen-
eralizing NCE to the conditional case. In partic-
ular, the joint model in Eq 2 has a single parti-
tion function Z(θ) which is estimated as a param-

eter of the model (Gutmann and Hyvärinen, 2012)
whereas the conditional model in Eq 1 has a sepa-
rate partition function Z(x; θ) for each value of x.
This difference is critical.

We show the following (throughout we define
K ≥ 1 to be the number of negative examples
sampled per training example):
• For any K ≥ 1, a binary classification variant

of NCE, as used by (Mnih and Teh, 2012; Mikolov
et al., 2013), gives consistent parameter estimates
under the assumption that Z(x; θ) is constant with
respect to x (i.e., Z(x; θ) = H(θ) for some func-
tion H). Equivalently, the method is consistent
under the assumption that the function s(x, y; θ)
is powerful enough to incorporate logZ(x; θ).
• For any K ≥ 1, a ranking-based variant of

NCE, as used by (Jozefowicz et al., 2016), gives
consistent parameter estimates under the much
weaker assumption that Z(x; θ) can vary with x.
Equivalently, there is no need for s(x, y; θ) to be
powerful enough to incorporate logZ(x; θ).
• We analyze the statistical efficiency of the

ranking-based and classification-based NCE vari-
ants. Under respective assumptions, both vari-
ants achieve Fisher efficiency (the same asymp-
totic mean square error as the MLE) as K →∞.
• We discuss application of our results to ap-

proaches of (Mnih and Teh, 2012; Mikolov et al.,
2013; Levy and Goldberg, 2014; Jozefowicz et al.,
2016) giving a unified account of these methods.
• We describe experiments on synthetic data

and language modeling evaluating the effective-
ness of the two NCE variants.

2 Basic Assumptions

We assume the following setup throughout:
•We have sets X and Y , where X ,Y are finite.
• There is some unknown joint distribution

pX,Y (x, y) where x ∈ X and y ∈ Y . We assume
that the marginal distributions satisfy pX(x) > 0
for all x ∈ X and pY (y) > 0 for all y ∈ Y .
• We have training examples {x(i), y(i)}ni=1

drawn I.I.D. from pX,Y (x, y).
• We have a scoring function s(x, y; θ) where

θ are the parameters of the model. For example,
s(x, y; θ) may be defined by a neural network.
•We use Θ to refer to the parameter space. We

assume that Θ ⊆ Rd for some integer d.
• We use pN (y) to refer to a distribution from

which negative examples are drawn in the NCE
approach. We assume that pN satisfies pN (y) > 0
for all y ∈ Y .

We will consider estimation under the following
two assumptions:

Assumption 2.1 There exists some parameter
value θ∗ ∈ Θ such that for all (x, y) ∈ X × Y ,

pY |X(y|x) =
exp(s(x, y; θ∗))

Z(x; θ∗)
(3)

where Z(x; θ∗) =
∑

y∈Y exp(s(x, y; θ∗)).

Assumption 2.2 There exists some parameter
value θ∗ ∈ Θ, and a constant γ∗ ∈ R, such that
for all (x, y) ∈ X × Y ,

pY |X(y|x) = exp (s(x, y; θ∗)− γ∗) . (4)

Assumption 2.2 is stronger than Assump-
tion 2.1. It requires logZ(x; θ∗) ≡ γ∗ for all
x ∈ X , that is, the conditional distribution is per-
fectly self-normalized. Under Assumption 2.2, it
must be the case that ∀x ∈ X∑
y

pY |X(y|x) =
∑
y

exp{s(x, y; θ∗)− γ∗} = 1

There are |X | constraints but only d + 1 free pa-
rameters. Therefore self-normalization is a non-
trivial assumption when |X | � d. In the case of
language modeling, |X | = |V |k � d + 1, where
|V | is the vocabulary size and k is the length of
the context. The number of constraints grows ex-
ponentially fast.

Given a scoring function s(x, y; θ) that satisfies
assumption 2.1, we can derive a scoring function
s′ that satisfies assumption 2.2 by defining

s′(x, y; θ, {cx : x ∈ X}) = s(x, y; θ)− cx

where cx ∈ R is a parameter for history x. Thus
we introduce a new parameter cx for each possible
history x. This is the most straightforward exten-
sion of NCE to the conditional case; it is used by
(Mnih and Teh, 2012). It has the clear drawback
however of introducing a large number of addi-
tional parameters to the model.

3 Two Estimation Algorithms

Figure 1 shows two NCE-based parameter esti-
mation algorithms, based respectively on binary
objective and ranking objective. The input to
either algorithm is a set of training examples
{x(i), y(i)}ni=1, a parameterK specifying the num-
ber of negative examples per training example, and

a distribution pN (·) from which negative exam-
ples are sampled. The algorithms differ only in the
choice of objective function being optimized: LnB
for binary objective, and LnR for ranking objective.
Binary objective essentially corresponds to a prob-
lem where the scoring function s(x, y; θ) is used
to construct a binary classifier that discriminates
between positive and negative examples. Rank-
ing objective corresponds to a problem where the
scoring function s(x, y; θ) is used to rank the true
label y(i) above negative examples y(i,1) . . . y(i,K)

for the input x(i).
Our main result is as follows:

Theorem 3.1 (Informal: see section 4 for a for-
mal statement.) For any K ≥ 1, the binary
classification-based algorithm in figure 1 is con-
sistent under Assumption 2.2, but is not always
consistent under the weaker Assumption 2.1. For
any K ≥ 1, the ranking-based algorithm in fig-
ure 1 is consistent under either Assumption 2.1 or
Assumption 2.2. Both algorithms achieve the same
statistical efficiency as the maximum-likelihood
estimate as K →∞.

The remainder of this section gives a sketch
of the argument underlying consistency, and dis-
cusses use of the two algorithms in previous work.

3.1 A Sketch of the Consistency Argument
for the Ranking-Based Algorithm

In this section, in order to develop intuition under-
lying the ranking algorithm, we give a proof sketch
of the following theorem:

Theorem 3.2 (First part of theorem 4.1 below.)
Define L∞R (θ) = E[LnR(θ)]. Under Assump-
tion 2.1, θ̄ ∈ arg maxθ L∞R (θ) if and only if, for
all (x, y) ∈ X × Y ,

pY |X(y|x) = exp(s(x, y; θ̄))/Z(x, θ̄).

This theorem is key to the consistency argument.
Intuitively as n increases LnR(θ) converges to
L∞R (θ), and the output to the algorithm converges
to θ′ such that p(y|x; θ′) = pY |X(y|x) for all x, y.
Section 4 gives a formal argument.

We now give a proof sketch for theo-
rem 3.2. Consider the algorithm in figure 1.
For convenience define ȳ(i) to be the vector
(y(i,0), y(i,1), . . . , y(i,K)). Define α(x, ȳ) =

Inputs: Training examples {x(i), y(i)}ni=1, sampling dis-
tribution pN (·) for generating negative examples, an in-
teger K specifying the number of negative examples per
training example, a scoring function s(x, y; θ). Flags
{BINARY = true, RANKING = false} if binary classifica-
tion objective is used, {BINARY = false, RANKING = true}
if ranking objective is used.

Definitions: Define s̄(x, y; θ) = s(x, y; θ)− log pN (y)
Algorithm:

• For i = 1 . . . n, k = 1 . . .K, draw y(i,k) I.I.D.
from the distribution pN (y). For convenience define
y(i,0) = y(i).

• If RANKING, define the ranking objective function

LnR(θ) =
1

n

n∑
i=1

log
exp(s̄(x(i), y(i,0); θ))∑K
k=0 exp(s̄(x(i), y(i,k); θ))

,

and the estimator θ̂R = argmax
θ∈Θ

LnR(θ).

• If BINARY, define the binary objective function

LnB(θ, γ) =
1

n

n∑
i=1

{
log g(x(i), y(i,0); θ, γ)

+

K∑
k=1

log
(

1− g(x(i), y(i,k); θ, γ)
)}

,

and estimator (θ̂B , γ̂B) = argmax
θ∈Θ,γ∈Γ

LnB(θ, γ), where

g(x, y; θ, γ) =
exp (s̄(x, y; θ)− γ)

exp (s̄(x, y; θ)− γ) +K
.

• Define θ̂ = θ̂R if RANKING and θ̂ = θ̂B otherwise.
Return θ̂ and

p̂Y |X(y|x) =
exp(s(x, y; θ̂))∑
y∈Y exp(s(x, y; θ̂))

Figure 1: Two NCE-based estimation algorithms, using
ranking objective and binary objective respectively.

∑K
k=0 pX,Y (x, ȳk)

∏
j 6=k pN (ȳj), and

q(k|x, ȳ; θ) =
exp(s̄(x, ȳk; θ))∑K
k=0 exp(s̄(x, ȳk; θ))

,

β(k|x, ȳ) =
pX,Y (x, ȳk)

∏
j 6=k pN (ȳj)

α(x, ȳ)

=
pY |X(ȳk|x)/pN (ȳk)∑N
k=0 pY |X(ȳk|x)/pN (ȳk)

C(x, ȳ; θ) = −
K∑
k=0

β(k|x, ȳ) log q(k|x, ȳ; θ)

Intuitively, q(·|x, ȳ; θ) and β(·|x, ȳ) are posterior

distributions over the true label k ∈ {0 . . .K}
given an input x, ȳ, under the parameters θ
and the true distributions pX,Ȳ (x, ȳ) respectively;
C(x, ȳ; θ) is the negative cross-entropy between
these two distributions.

The proof of theorem 3.2 rests on two iden-
tities. The first identity states that the objective
function is the expectation of the negative cross-
entropy w.r.t. the density function 1

K+1α(x, ȳ)
(see Section B.1.1 of the supplementary material
for derivation):

L∞R (θ) =
∑
x

∑
ȳ

1

K + 1
α(x, ȳ)C(x, ȳ; θ). (5)

The second identity concerns the relationship be-
tween q(·|x, ȳ; θ) and β(·|x, ȳ). Under assump-
tion 2.1, for all x, ȳ, k ∈ {0 . . .K},

q(k|x, ȳ; θ∗)

=
pY |X(ȳk|x)Z(x; θ∗)/pN (yk)∑K
k=0 pY |X(ȳk|x)Z(x; θ∗)/pN (yk)

= β(k|x, ȳ) (6)

It follows immediately through the properties of
negative cross entropy that

∀x, ȳ, θ∗ ∈ argmax
θ

C(x, ȳ; θ) (7)

The remainder of the argument is as follows:
• Eqs. 7 and 5 imply that θ∗ ∈ argmaxθ L∞R (θ).
• Assumption 2.1 implies that α(x, ȳ) > 0 for

all x, ȳ. It follows that any θ′ ∈ arg maxθ L∞R (θ)
satisfies

for all x, ȳ, k, (8)

q(k|x, ȳ; θ′) = q(k|x, ȳ; θ∗) = β(k|x, ȳ)

Otherwise there would be some x, ȳ such that
C(x, ȳ; θ′) < C(x, ȳ; θ∗).
• Eq. 8 implies that ∀x, y, p(y|x; θ′) =

p(y|x; θ∗). See the proof of lemma B.3 in the sup-
plementary material.

In summary, the identity in Eq. 5 is key: the ob-
jective function in the limit, L∞R (θ), is related to
a negative cross-entropy between the underlying
distribution β(·|x, ȳ) and a distribution under the
parameters, q(·|x, ȳ; θ). The parameters θ∗ maxi-
mize this negative cross entropy over the space of
all distributions {q(·|x, ȳ; θ), θ ∈ Θ}.

3.2 The Algorithms in Previous Work

To motivate the importance of the two algorithms,
we now discuss their application in previous work.

Mnih and Teh (2012) consider language mod-
eling, where x = w1w2 . . . wn−1 is a history con-
sisting of the previous n−1 words, and y is a word.
The scoring function is defined as

s(x, y; θ) = (
n−1∑
i=1

Cirwi) · qy + by − cx

where rwi is an embedding (vector of parameters)
for history word wi, qy is an embedding (vector of
parameters) for word y, each Ci for i = 1 . . . n−1
is a matrix of parameters specifying the contribu-
tion of rwi to the history representation, by is a
bias term for word y, and cx is a parameter corre-
sponding to the log normalization term for history
x. Thus each history x has its own parameter cx.
The binary objective function is used in the NCE
algorithm. The noise distribution pN (y) is set to
be the unigram distribution over words in the vo-
cabulary.

This method is a direct application of the
original NCE method to conditional estimation,
through introduction of the parameters cx corre-
sponding to normalization terms for each history.
Interestingly, Mnih and Teh (2012) acknowledge
the difficulties in maintaining a separate parame-
ter cx for each history, and set cx = 0 for all x,
noting that empirically this works well, but with-
out giving justification.

Mikolov et al. (2013) consider an NCE-based
method using the binary objective function for
estimation of word embeddings. The skip-gram
method described in the paper corresponds to a
model where x is a word, and y is a word in the
context. The vector vx is the embedding for word
x, and the vector v′y is an embedding for word y
(separate embeddings are used for x and y). The
method they describe uses

s̄(x, y; θ) = v′y · vx

or equivalently

s(x, y; θ) = v′y · vx + log pN (y)

The negative-sampling distribution pN (y) was
chosen as the unigram distribution pY (y) raised to
the power 3/4. The end goal of the method was to
learn useful embeddings vw and v′w for each word

in the vocabulary; however the method gives a
consistent estimate for a model of the form

p(y|x) =
exp

(
v′y · vx + log pN (y)

)∑
y exp

(
v′y · vx + log pN (y)

)
=

pN (y) exp
(
v′y · vx

)
Z(x; θ)

assuming that Assumption 2.2 holds, i.e.
Z(x; θ) =

∑
y pN (y) exp

(
v′y · vx

)
≡ H(θ)

which does not vary with x.
Levy and Goldberg (2014) make a connec-

tion between the NCE-based method of (Mikolov
et al., 2013), and factorization of a matrix of point-
wise mutual information (PMI) values of (x, y)
pairs. Consistency of the NCE-based method un-
der assumption 2.2 implies a similar result, specif-
ically: if we define pN (y) = pY (y), and de-
fine s(x, y; θ) = v′y · vx + log pN (y) implying
s̄(x, y; θ) = v′y · vx, then parameters v′y and vx
converge to values such that

p(y|x) =
pY (y) exp

(
v′y · vx

)
H(θ)

or equivalently

PMI(x, y) = log
p(y|x)

p(y)
= v′y · vx − logH(θ)

That is, following (Levy and Goldberg, 2014), the
inner product v′y · vx is an estimate of the PMI up
to a constant offset H(θ).

Finally, Jozefowicz et al. (2016) introduce the
ranking-based variant of NCE for the language
modeling problem. This is the same as the
ranking-based algorithm in figure 1. They do not,
however, make the connection to assumptions 2.2
and 2.1, or derive the consistency or efficiency
results in the current paper. Jozefowicz et al.
(2016) partially motivate the ranking-based vari-
ant throught the importance sampling viewpoint
of Bengio and Senécal (2008). However there are
two critical differences: 1) the algorithm of Ben-
gio and Senécal (2008) does not lead to the same
objective LnR in the ranking-based variant of NCE;
instead it uses importance sampling to derive an
objective that is similar but not identical; 2) the
importance sampling method leads to a biased es-
timate of the gradients of the log-likelihood func-
tion, with the bias going to zero only as K → ∞.
In contrast the theorems in the current paper show
that the NCE-based methods are consistent for any

value of K. In summary, while it is tempting
to view the ranking variant of NCE as an impor-
tance sampling method, the NCE-based view gives
stronger guarantees for finite values of K.

4 Theory

This section states the main theorems. The supple-
mentary material contains proofs. Throughout the
paper, we use EX [·],EY [·],EX,Y [·],EY |X=x[·]
to represent the expectation w.r.t. pX(·), pY (·),
pX,Y (·, ·), pY |X(·|x). We use ‖ · ‖ to denote ei-
ther the l2 norm when the operand is a vector or
the spectral norm when the operand is a matrix.
Finally, we use⇒ to represent converge in distri-
bution. Recall that we have defined

s̄(x, y; θ) = s(x, y; θ)− log pN (y).

4.1 Ranking
In this section, we study noise contrastive estima-
tion with ranking objective under Assumption 2.1.
First consider the following function:

L∞R (θ) =
∑

x,y0,··· ,yK

pX,Y (x, y0)
K∏
i=1

pN (yi)

× log

(
exp(s̄(x, y0; θ))∑K
k=0 exp(s̄(x, yk; θ))

)
.

By straightforward calculation, one can find that

L∞R (θ) = E [LnR(θ)] .

Under mild conditions, LnR(θ) converges to
L∞R (θ) as n → ∞. Denote the set of maximiz-
ers of L∞R (θ) by Θ∗R, that is

Θ∗R = arg max
θ∈Θ

L∞R (θ) .

The following theorem shows that any parameter
vector θ̄ ∈ Θ∗R if and only if it gives the correct
conditional distribution pY |X(y|x).

Assumption 4.1 (Identifiability). For any θ ∈ Θ,
if there exists a function c(x) such that s(x, y; θ)−
s(x, y; θ∗) ≡ c(x) for all (x, y) ∈ X × Y , then
θ = θ∗ and thus c(x) = 0 for all x.

Theorem 4.1 Under Assumption 2.1, θ̄ ∈ Θ∗R if
and only if, for all (x, y) ∈ X × Y ,

pY |X(y|x) = exp(s(x, y; θ̄))/Z(x, θ̄).

In addition, Θ∗R is a singleton if and only if As-
sumption 4.1 holds.

Next we consider consistency of the estimation
algorithm based on the ranking objective under the
following regularity assumptions:

Assumption 4.2 (Continuity). s(x, y; θ) is con-
tinuous w.r.t. θ for all (x, y) ∈ X × Y .

Assumption 4.3 Θ∗R is contained in the interior
of a compact set Θ ⊂ Rd.

For a given estimate p̂Y |X of the conditional dis-
tribution pY |X , define the error metric d(·, ·) by

d
(
p̂Y |X , pY |X

)
=

∑
x∈X ,y∈Y

pX,Y (x, y)

×
(
p̂Y |X(y|x)− pY |X(y|x)

)2
.

For a sequence of IID observations (x(1), y(1)),
(x(2), y(2)), . . . , define the sequences of esti-
mates (θ̂1

R, p̂
1
Y |X), (θ̂2

R, p̂
2
Y |X), . . . where the

nth estimate (θ̂nR, p̂nY |X) is obtained by op-
timizing the ranking objective of figure 1 on
(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)).

Theorem 4.2 (Consistency) Under Assump-
tions 2.1, 4.2, 4.3, the estimates based on the
ranking objective are strongly consistent in the
sense that for any fixed K ≥ 1,

P
{

lim
n→∞

min
θ∗∈Θ∗R

‖θ̂nR − θ∗‖ = 0
}

= P
{

lim
n→∞

d
(
p̂nY |X , pY |X

)
= 0
}

= 1

Further, if Assumption 4.1 holds,

P
{

lim
n→∞

θ̂nR = θ∗
}

= 1.

Remark 4.1 Thoughout the paper, all NCE esti-
mators are defined for some fixed K. We suppress
the dependence on K to simplify notation (e.g. θ̂nR
should be interpreted as θ̂n,KR).

4.2 Classification
Now we turn to the analysis of NCE with binary
objective under Assumption 2.2. First consider the
following function,

L∞B (θ, γ) =
∑
x,y

{
pX,Y (x, y) log (g(x, y; θ, γ))

+KpX(x)pN (y) log (1− g(x, y; θ, γ))
}

One can find that

L∞B (θ, γ) = E [LnB(θ, γ)] .

Denote the set of maximizers of L∞B (θ, γ) by Ω∗B :

Ω∗B = arg max
θ∈Θ,γ∈Γ

L∞B (θ, γ) .

Parallel results of Theorem 4.1, 4.2 are established
as follows.

Assumption 4.4 (Identifiability). For any θ ∈
Θ, if there exists some constant c such that
s(x, y; θ)−s(x, y; θ∗) ≡ c for all (x, y) ∈ X ×Y ,
then θ = θ∗ and thus c = 0.

Assumption 4.5 Ω∗B is in the interior of Θ × Γ
where Θ ⊂ Rd,Γ ⊂ R are compact sets.

Theorem 4.3 Under Assumption 2.2, (θ̄, γ̄) ∈
Ω∗B if and only if, for all (x, y) ∈ X × Y ,

pY |X(y|x) = exp(s(x, y; θ̄)− γ̄)

for all (x, y). Ω∗B is a singleton if and only if As-
sumption 4.4 holds.

Similarly we can define the sequence of es-
timates (θ̂1

B, γ̂
1
B, p̂

1
Y |X), (θ̂2

B, γ̂
2
B, p̂

2
Y |X), . . .

based on the binary objective.

Theorem 4.4 (Consistency) Under Assump-
tion 2.2, 4.2, 4.5, the estimates defined by the
binary objective are strongly consistent in the
sense that for any K ≥ 1,

P
{

lim
n→∞

min
(θ∗,γ∗)∈Ω∗B

‖(θ̂nB, γ̂nB)− (θ∗, γ∗)‖ = 0
}

= P
{

lim
n→∞

d
(
p̂nY |X , pY |X

)
= 0
}

= 1

If further Assumption 4.4 holds,

P
{

lim
n→∞

(θ̂nB, γ̂
n
B) = (θ∗, γ∗)

}
= 1.

4.3 Counterexample
In this section, we give a simple example to
demonstrate that the binary classification approach
fails to be consistent when assumption 2.1 holds
but assumption 2.2 fails (i.e. the partition function
depends on the input).

Consider X ∈ X = {x1, x2} with marginal
distribution

pX(x1) = pX(x2) = 1/2,

and Y ∈ Y = {y1, y2} generated by the condi-
tional model specified in assumption 2.1 with the
score function parametrized by θ = (θ1, θ2) and

s(x1, y1; θ) = log θ1,

s(x1, y2; θ) = s(x2, y1; θ) = s(x2, y2; θ) = log θ2.

Assume the true parameter is θ∗ = (θ∗1, θ
∗
2) =

(1, 3). By simple calculation,

Z(θ∗;x1) = 4, Z(θ∗;x2) = 6,

pX,Y (x1, y1) = 1/8, pX,Y (x1, y2) = 3/8,
pX,Y (x2, y1) = pX,Y (x2, y2) = 1/4.

Suppose we choose the negative sampling distri-
bution pN (y1) = pN (y2) = 1/2. For any K ≥ 1,
by the Law of Large Numbers, as n goes to infin-
ity, LnB(θ, γ) will converge to L∞B (θ, γ). Substi-
tute in the parameters above. One can show that

L∞B (θ, γ) =
1

8
log

2θ1

2θ1 +K exp(γ)

+
K

4
log

K exp(γ)

2θ1 +K exp(γ)

+
7

8
log

2θ2

2θ2 +K exp(γ)

+
3K

4
log

K exp(γ)

2θ2 +K exp(γ)
.

Setting the derivatives w.r.t. θ1, θ2 to zero, one will
obtain

θ1 =
1

4
exp(γ), θ2 =

7

12
exp(γ).

So for any (θ̃1, θ̃2, γ̃) ∈ argmaxθ,γ L
∞
B (θ, γ),

(θ̃1, θ̃2, γ̃) will satisfy the equalities above. Then
the estimated distribution p̃Y |X will satisfy

p̃Y |X(y1|x1)

p̃Y |X(y2|x1)
=
θ̃1

θ̃2

=
1/4

7/12
=

3

7
,

which contradicts the fact that

pY |X(y1|x1)

pY |X(y2|x1)
=
pX,Y (x1, y1)

pX,Y (x1, y2)
=

1

3
.

So the binary objective does not give consistent
estimation of the conditional distribution.

4.4 Asymptotic Normality and Statistical
Efficiency

Noise Contrastive Estimation significantly reduces
the computational complexity, especially when the
label space |Y| is large. It is natural to ask: does
such scalability come at a cost? Classical likeli-
hood theory tells us, under mild conditions, the
maximum likelihood estimator (MLE) has nice
properties like asymptotic normality and Fisher ef-
ficiency. More specifically, as the sample size goes

to infinity, the distribution of the MLE will con-
verge to a multivariate normal distribution, and the
mean square error of the MLE will achieve the
Cramer-Rao lower bound (Ferguson, 1996).

We have shown the consistency of the NCE es-
timators in Theorem 4.2 and Theorem 4.4. In this
part of the paper, we derive their asymptotic distri-
bution and quantify their statistical efficiency. To
this end, we restrict ourselves to the case where θ∗

is identifiable (i.e. Assumptions 4.1 or 4.4 hold)
and the scoring function s(x, y; θ) satisfies the fol-
lowing smoothness condition:

Assumption 4.6 (Smoothness). The scoring func-
tion s(x, y; θ) is twice continuous differentiable
w.r.t. θ for all (x, y) ∈ X × Y .

We first introduce the following maximum-
likelihood estimator.

θ̂ MLE = arg min
θ

LnMLE(θ)

:= arg min
θ

n∑
i=1

log

(
exp(s(x(i), y(i); θ))∑
y∈Y exp(s(x(i), y; θ))

)
.

Define the matrix

Iθ∗ = EX
[
VarY |X=x [∇θs(x, y; θ∗)]

]
.

As shown below, Iθ∗ is essentially the Fisher in-
formation matrix under the conditional model.

Theorem 4.5 Under Assumption 2.1, 4.1, 4.3,
and 4.6, if Iθ∗ is non-singular, as n→∞

√
n(θ̂ MLE − θ∗) ⇒ N (0, I−1

θ∗).

For any given estimator θ̂, define the scaled
asymptotic mean square error by

MSE∞(θ̂) = lim
n→∞

E

[∥∥∥∥√n

d

(
θ̂ − θ∗

)∥∥∥∥2
]
,

where d is the dimension of the parameter θ∗. The-
orem 4.5 implies that,

MSE∞(θ̂ MLE) = Tr(I−1
θ∗)/d.

where Tr(·) denotes the trace of a matrix. Accord-
ing to classical MLE theory (Ferguson, 1996), un-
der certain regularity conditions, this is the best
achievable mean square error. So the next question
to answer is: can these NCE estimators approach
this limit?

Assumption 4.7 There exist positive constants
c, C such that σmin(Iθ∗) ≥ c and

max
(x,y)∈X×Y

{
|s(x, y; θ∗)|, ‖∇θs(x, y; θ∗)‖ ,∥∥∇2

θs(x, y; θ∗)
∥∥} ≤ C.

where σmin(·) denotes the smallest singular value.

Theorem 4.6 (Ranking) Under Assumption 2.1,
4.1, 4.3, 4.6, 4.7, there exists an integer K0 such
that for all K ≥ K0, as n→∞

√
n
(
θ̂R − θ∗

)
⇒ N (0, I−1

R,K), (9)

for some matrix IR,K . There exists a constant C
such that for all K ≥ K0,

|MSE∞(θ̂R)−MSE∞(θ̂ MLE)| ≤ C/
√
K

‖I−1
R,K − I

−1
θ∗ ‖ ≤ C/

√
K

Theorem 4.7 (Binary) Under Assumption 2.2,
4.4, 4.5, 4.6, 4.7, there exists an integer K0 such
that, for any K ≥ K0, as n→∞

√
n
(
θ̂B − θ∗

)
⇒ N (0, I−1

B,K), (10)

for some matrix IB,K . There exists a constant C
such that for all K ≥ K0,

|MSE∞(θ̂B)−MSE∞(θ̂ MLE)| ≤ C/K
‖I−1

B,K − I
−1
θ∗ ‖ ≤ C/K.

Remark 4.2 Theorem 4.6 and 4.7 reveal that un-
der respective model assumptions, for any given
K ≥ K0 both NCE estimators are asymptotically
normal and

√
n-consistent. Moreover, both NCE

estimators approach Fisher efficiency (statistical
optimality) as K grows.

5 Experiments

5.1 Simulations
Suppose we have a feature space X ⊂ Rd with
|X | = mx, label space Y = {1, · · · ,my}, and pa-
rameter θ = (θ1, · · · , θmy) ∈ Rmy×d. Then for
any given sample size n, we can generate observa-
tions (x(i), y(i)) by first sampling x(i) uniformly
from X and then sampling y(i) ∈ Y by the con-
dional model

p(y|x; θ) = exp(x′θy)/

my∑
y=1

exp(x′θy).

We first consider the estimation of θ by MLE and
NCE-ranking. We fix d = 4,mx = 200,my =
100 and generate X and the parameter θ from sep-
arate mixtures of Gaussians. We try different con-
figurations of (n,K) and report the KL divergence
between the estimated distribution and true distri-
bution, as summarized in the left panel of figure 2.
The observations are:
• The NCE estimators are consistent for any

fixed K. For a fixed sample size, the NCE estima-
tors become comparable to MLE as K increases.
• The larger the sample size, the less sensitive

are the NCE estimators to K. A very small value
of K seems to suffice for large sample size.

Apparently, under the parametrization above,
the model is not self-normalized. To use NCE-
binary, we add an extra x-dependent bias parame-
ter bx to the score function (i.e. s(x, y; θ) = x′θy+
bx) to make the model self-normalized or else the
algorithm will not be consistent. Similar patterns
to figure 2 are observed when varying sample size
and K (see Section A.1 of the supplementary ma-
terial). However this makes NCE-binary not di-
rectly comparable to NCE-ranking/MLE since its
performance will be compromised by estimating
extra parameters and the number of extra param-
eters depends on the richness of the feature space
X . To make this clear, we fix n = 16000, d =
4,my = 100,K = 32 and experiment with mx =
100, 200, 300, 400. The results are summarized on
the right panel of figure 2. As |X | increases, the
KL divergence will grow while the performance of
NCE-ranking/MLE is independent of |X |. With-
out the x-dependent bias term for NCE-binary, the
KL divergence will be much higher due to lack of
consistency (0.19, 0.21, 0.24, 0.26 respectively).

5.2 Language Modeling

We evaluate the performance of the two NCE al-
gorithms on a language modeling problem, using
the Penn Treebank (PTB) dataset (Marcus et al.,
1993). We choose (Zaremba et al., 2014) as the
benchmark where the conditional distribution is
modeled by two-layer LSTMs and the parame-
ters are estimated by MLE (note that the current
state-of-the-art is (Yang et al., 2018)). Zaremba
et al. (2014) implemented 3 model configurations:
“Small” , “Medium” and “Large”, which have
200, 650 and 1500 units per layer respectively.
We follow their setup (model size, unrolled steps,
dropout ratio, etc) but train the model by maximiz-

Small Medium Large
MLE 111.5 82.7 78.4
NCE Ranking Binary Ranking Binary Ranking Binary

K = 200 113.8 106.8 83.2 82.1 79.3 76.0
K = 400 112.9 105.6 82.3 81.5 77.9 75.6
K = 800 111.9 105.3 81.4 81.6 77.8 75.7
K = 1600 110.6 104.8 81.7 81.5 77.5 75.9
reg-MLE 105.4 79.9 77.0

reg-Ranking (K = 1600) 105.4 79.8 75.0
reg-Binary (K = 1600) 104.8 82.5 75.7

Table 1: Perplexity on the test set of Penn Treebank. We show performance for the ranking v.s. binary loss
algorithms, with different values for K, and with/without regularization.

Figure 2: KL divergence between the true distribution and the estimated distribution.

ing the two NCE objectives. We use the unigram
distribution as the negative sampling distribution
and consider K = 200, 400, 800, 1600.

The results on the test set are summarized in ta-
ble 1. Similar patterns are observed on the vali-
dation set (see Section A.2 of the supplementary
material). As shown in the table, the performance
of NCE-ranking and NCE-binary improves as the
number of negative examples increases, and fi-
nally outperforms the MLE.

An interesting observation is, without regular-
ization, the binary classification approach outper-
forms both ranking and MLE. This suggests the
model space (two-layer LSTMs) is rich enough as
to approximately incorporate the x-dependent par-
tition function Z(θ;x), thus making the model ap-
proximately self-normalized. This motivates us to
modify the ranking and MLE objectives by adding
the following regularization term:

α

n

n∑
i=1

log

 1

m

m∑
j=1

exp
(
s̄(x(i), ỹ(i,j); θ)

)2

≈ αEX
[
(logZ(x; θ))2

]
,

where ỹ(i,j), 1 ≤ j ≤ m are sampled from
the noise distribution pN (·). This regularization

term promotes a constant partition function, that is
Z(x; θ) ≈ 1 for all x ∈ X . In our experiments, we
fix m to be 1/10 of the vocabulary size, K = 1600
and tune the regularization parameter α. As shown
in the last three rows of the table, regularization
significantly improves the performance of both the
ranking approach and the MLE.

6 Conclusions

In this paper we have analyzed binary and rank-
ing variants of NCE for estimation of conditional
models p(y|x; θ). The ranking-based variant is
consistent for a broader class of models than the
binary-based algorithm. Both algorithms achieve
Fisher efficiency as the number of negative exam-
ples increases. Experiments show that both algo-
rithms outperform MLE on a language modeling
task. The ranking-based variant of NCE outper-
forms the binary-based variant once a regularizer
is introduced that encourages self-normalization.

Acknowledgments

The authors thank Emily Pitler and Ali Elkahky
for many useful conversations about the work, and
David Weiss for comments on an earlier draft of
the paper.

References
Yoshua Bengio and Jean-Sébastien Senécal. 2008.

Adaptive importance sampling to accelerate train-
ing of a neural probabilistic language model. IEEE
Transactions on Neural Networks, 19(4):713–722.

Adam L. Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Comput.
Linguist., 22(1):39–71.

Thomas Shelburne Ferguson. 1996. A course in large
sample theory, volume 49. Chapman & Hall Lon-
don.

Michael U Gutmann and Aapo Hyvärinen. 2012.
Noise-contrastive estimation of unnormalized sta-
tistical models, with applications to natural image
statistics. Journal of Machine Learning Research,
13(Feb):307–361.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Pro-
ceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, pages 2177–2185, Cambridge, MA, USA.
MIT Press.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Andriy Mnih and Yee W Teh. 2012. A fast and simple
algorithm for training neural probabilistic language
models. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages
1751–1758.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax
bottleneck: A high-rank RNN language model. In
International Conference on Learning Representa-
tions.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

A Experiment Results

A.1 Similation Results for NCE-binary

See figure 3.

Figure 3: KL divergence between the true distribution
and the estimated distribution.

A.2 Perplexity on Validation Set of Penn
Treebank

See table 2 below.

B Proofs

Recall we have the following setup:

• X ,Y are finite sets

• pX(x), pY (y), pN (y) > 0,∀x ∈ X , y ∈ Y .

We present the proofs for ranking loss and bi-
nary classification loss separately, in the following
two subsections.

The following fact will be frequently used in the
consistency proof.

Lemma B.1 Define the K-simplex by

DK =

{
x|x ∈ RK+1

+ ,
K∑
i=0

xi = 1

}
.

Then for any p ∈ DK ,

p = arg max
q∈DK

K∑
i=0

qi log pi.

B.1 Proofs for Ranking Loss

To simplify notations, we use y0:K to represent
the vector (y0, · · · , yK) and y(i,0:K) to represent
(y(i,0), · · · , y(i,K)) where we define y(i,0) := y(i).

For any tuple (x, y0:K) and parameter θ, we de-
fine

q(i|x, y0:K ; θ) =
exp(s̄(x, yi; θ))∑K
i=0 exp(s̄(x, yi; θ))

.

Lemma B.2 Under Assumption 2.1,

q(i|x, y0:K ; θ∗) =
pY |X(yi|x)/pN (yi)∑K
j=0 pY |X(yj |x)/pN (yj)

Proof: The lemma follows Assumption 2.1 that

pY |X(y|x) =
exp(s(x, y; θ∗))

Z(x; θ∗)

=
pN (y) exp(s̄(x, y; θ∗))

Z(x; θ∗)

�

Lemma B.3 Define

p(y|x; θ) =
exp{s(x, y; θ)}∑
y exp{s(x, y; θ)}

For any θ1, θ2, the following three statements are
equivalent:

(1) For all x, y

p(y|x; θ1) = p(y|x; θ2)

(2) For all x, y0:k and 0 ≤ i ≤ K

q(i|x, y0:k; θ1) = q(i|x, y0:k; θ2)

(3) There exists some function c(·) such that for
all x, y

s(x, y; θ1)− s(x, y; θ2) = c(x).

Proof: By Lemma B.2,

q(i|x, y0:k; θ) =
p(yi|x; θ)/pN (yi)∑K
i=0 p(yi|x; θ)/pN (yi)

,

and hence (1) ⇒ (2). To show (2) ⇒ (3), no-
tice that, for any x, y, y′, by setting i = 0 and
y0 = y, y1 = y2 . . . = yK = y′, q(i|x, y0:k; θ1) =
q(i|x, y0:k; θ2) will imply

exp(s̄(x, y; θ1))

exp(s̄(x, y; θ1)) +K exp(s̄(x, y′; θ1))

=
exp(s̄(x, y; θ2))

exp(s̄(x, y; θ2)) +K exp(s̄(x, y′; θ2))
,

Small Medium Large
MLE 116.8 86.2 82.2
NCE Ranking Binary Ranking Binary Ranking Binary

K = 200 121.1 112.1 87.8 86.3 84.1 80.8
K = 400 119.0 110.6 87.2 85.8 82.9 80.0
K = 800 116.8 110.1 86.4 85.5 82.3 79.9
K = 1600 116.5 109.8 86.3 85.4 82.0 79.5
reg-MLE 109.9 83.1 79.9

reg-Ranking (K = 1600) 110.5 83.3 78.4
reg-Binary (K = 1600) 109.0 86.1 79.7

Table 2: Perplexity on the validation set. We show performance for the Ranking vs. Binary loss algorithms, with
different values for K, and with/without regularization.

or equivalently,

1

1 +K exp(s̄(x, y′; θ1)− s̄(x, y; θ1))

=
1

1 +K exp(s̄(x, y′; θ2)− s̄(x, y; θ2))
.

Then it follows that,

s̄(x, y′; θ1)−s̄(x, y; θ1) = s̄(x, y′; θ2)−s̄(x, y′; θ2),

and therefore,

s(x, y; θ1)−s(x, y; θ2) = s(x, y′; θ1)−s(x, y′; θ2).

So s(x, y; θ1)− s(x, y; θ2) only depends on x. Fi-
nally, we show (3) ⇒ (1). If (3) holds, for all
x, y, y′

s(x, y; θ1)−s(x, y; θ2) = s(x, y′; θ1)−s(x, y′; θ2),

which implies

s(x, y; θ1)−s(x, y′; θ1) = s(x, y; θ2)−s(x, y′; θ2).

We then have

p(y|x; θ1) =
exp(s(x, y; θ1))∑
y′ exp(s(x, y′; θ1))

=
1∑

y′ exp(s(x, y′; θ1)− s(x, y; θ1))

=
1∑

y′ exp(s(x, y′; θ2)− s(x, y; θ2))

= p(y|x; θ2).

�

B.1.1 Proof of Theorem 4.1
If we define

gi(θ;x, y0:K)

= pX,Y (x, yi)
∏
j 6=i

pN (yj) log q(i|x, y0:K ; θ)

then for any i ∈ {0 . . .K}, we have

L∞R (θ) =
∑
x

∑
y0:K

gi(x, y0:K ; θ)

It follows that

L∞R (θ) =
1

K + 1

K∑
i=0

∑
x

∑
y0:K

gi(x, y0:K ; θ)

=
1

K + 1

∑
x

∑
y0:K

K∑
i=0

gi(x, y0:K ; θ)

=
1

K + 1

∑
x

∑
y0,y1,··· ,yK

f(θ;x, y0:K)

where

f(θ;x, y0:K) =

K∑
i=0

gi(x, y0:K ; θ)

=
K∑
i=0

pX,Y (x, yi)
∏
j 6=i

pN (yj) log q(i|x, y0:K ; θ)

=

 K∑
i=0

pX,Y (x, yi)
∏
j 6=i

pN (yj)

× K∑
i=0

pX,Y (x, yi)
∏
j 6=i pN (yj)∑K

i=0 pX,Y (x, yi)
∏
j 6=i pN (yj)

log q(i|x, y0:K ; θ)

=

 K∑
i=0

pX,Y (x, yi)
∏
j 6=i

pN (yj)

×
K∑
i=0

pY |X(yi|x)/pN (yi)∑K
j=0 pY |X(yj |x)/pN (yj)

log q(i|x, y0:K ; θ).

Next note that
∑K

i=0 q(i|x, y0:K ; θ) = 1,
hence by Lemmas B.1 and B.2, θ∗ ∈
arg maxθ f(θ;x, y0:K) for all x, y0:K , hence
θ∗ ∈ arg maxθ L

∞
R (θ).

It follows that for any θ̄ ∈ arg maxθ̄ L
∞
R (θ̄), θ̄

must be in arg maxθ f(θ;x, y0:K) for all x, y0:K ,
from which it follows that

q(i|x, y0:k; θ̄) = q(i|x, y0:k; θ
∗)

for all x, y0:k, i. Then by Lemma B.3, for all x, y

p(y|x; θ̄) = p(y|x; θ∗) = pY |X(y|x).

This proves the first part of the theorem. To prove
the second part, for any θ̄ ∈ Θ∗R, by the first part
of this theorem, for all x, y

p(y|x; θ̄) = p(y|x; θ∗) = pY |X(y|x).

It follows from Lemma B.3 that there exists func-
tion c(x) such that for all x, y

s(x, y; θ̄)− s(x, y; θ∗) = c(x).

If Assumption 4.1 holds, θ = θ∗, that is Θ∗R is a
singleton. On the other hand, if there exists func-
tion c(x) and parameter θ̄ such that for all x, y

s(x, y; θ̄)− s(x, y; θ∗) = c(x),

then by Lemma B.3, for all x, y

p(y|x; θ̄) = p(y|x; θ∗) = pY |X(y|x).

So θ ∈ Θ∗R. If Θ∗R is a singleton, it must be the
case that θ̄ = θ∗. This proves the second part of
the theorem.

�

B.1.2 Proof of Theorem 4.2
Under the assumptions in Theorem 4.2, by clas-
sical large sample theory (e.g. Theorem 16(a) in
(Ferguson, 1996)), for any compact set K ⊂ Θ,

P
{

lim
n→∞

sup
θ∈K
|LnR(θ)− L∞R (θ)| = 0

}
= 1 (11)

Since |LnR(θ)− L∞R (θ)| ≥ LnR(θ)− L∞R (θ),

P
{

lim sup
n→∞

sup
θ∈K

(LnR(θ)− L∞R (θ)) ≤ 0

}
= 1.

(12)

For any θ̂nK ∈ arg max
θ∈K
LnR(θ),

sup
θ∈K

(LnR(θ)− L∞R (θ)) ≥ LnR(θ̂nK)− L∞R (θ̂nK)

≥ LnR(θ̂nK)− sup
θ∈K

L∞R (θ)

= sup
θ∈K
LnR(θ)− sup

θ∈K
L∞R (θ).

Combining this inequality and (12) yields

P
{

lim sup
n→∞

sup
θ∈K
LnR(θ) ≤ sup

θ∈K
L∞R (θ)

}
= 1.

(13)
Recall that

Θ∗R =

{
θ̄ | θ̄ ∈ arg max

θ∈Θ
L∞R (θ)

}
.

For any ρ > 0, define

Θρ =

{
θ | θ ∈ Θ, arg min

θ∗∈Θ∗R
‖θ − θ∗‖ ≥ ρ

}
.

By Assumption 4.2, L∞R (θ) is a continuous func-
tion of θ and therefore,

δρ
.
= sup

θ∈Θρ

L∞R (θ) < δ
.
= sup

θ∈Θ
L∞R (θ).

Apply the uniform convergence results in equa-
tion (13) with K = Θρ, with probability 1,

lim sup
n→∞

sup
θ∈Θρ

LnR(θ) ≤ δρ < δ. (14)

On the other hand, substitute |LnR(θ)− L∞R (θ)| ≥
L∞R (θ)−LnR(θ) into (11), with the same arguments
as used to obtain (13), one could also show that,
for any compact set K ⊂ Θ,

P
{

lim inf
n→∞

sup
θ∈K
LnR(θ) ≥ sup

θ∈K
L∞R (θ)

}
= 1.

Let K = Θ, by definition,

P
{

lim inf
n→∞

LnR(θ̂R) ≥ δ
}

= 1. (15)

Combine equations (14), (15), there exists integer
N such that

P
{
θ̂nR 6∈ Θρ, for all n ≥ N

}
= 1.

Since this holds for any ρ > 0,

P
{

lim
n→∞

min
θ∗∈Θ∗R

‖θ̂nR − θ∗‖ = 0
}
. (16)

Define the mapping g from the parameter space Θ
to the function space onX×Y by g(θ) = p(·, · ; θ)
where

p(x, y; θ) = exp(s(x, y; θ))/Z(x; θ),

and Z(x; θ) =
∑

y∈Y exp(s(x, y; θ)). By Theo-
rem 4.1,

Θ∗R =
{
θ | g(θ) = pY |X , θ ∈ Θ

}
. (17)

Further by Assumption 4.2, g(θ) is a continuous
function of θ under the metric d(·, ·). Since Θ is
compact set, g(θ) is uniform continuous. By uni-
form continuity, for any ε > 0, there exists ∆ such
that, for any θ1, θ2 satisfying ‖θ1 − θ2‖ ≤ ∆,

d (g(θ1), g(θ2)) ≤ ε.

Hence, equation (16) implies

P
{

lim
n→∞

d
(
p̂nY |X , pY |X

)
= 0
}

= 1.

When assumption 4.1 holds, by Theorem 4.1,
Θ∗ = {θ∗} is a singleton and equation (16) is re-
duced to

P
{

lim
n→∞

θ̂nR = θ∗
}

= 1.

B.1.3 Proof of Theorem 4.6
Since we have defined y(i,0) := y(i), the objective
function LnR(θ) can be written as the average of
the following I.I.D. random variables L(i)

R (θ), 1 ≤
i ≤ n:

LnR(θ) =
1

n

n∑
i=1

log

(
exp(s̄(x(i), y(i,0); θ))∑K
j=0 exp(s̄(x(i), y(i,j); θ)

)

:=
1

n

n∑
i=1

L
(i)
R (θ).

(18)
Define

LR(θ) = log

(
exp(s̄(x, y0; θ))∑K
j=0 exp(s̄(x, yj ; θ)))

)

where (x, y0:K) ∼ pX,Y (x, y0)
∏K
j=1 pN (yj).

Then we have

(x(i), y(i,0:K)) =d (x, y0, · · · , yK)

L
(i)
R (θ) =d LR(θ)

for 1 ≤ i ≤ n, where =d represents equal in dis-
tribution.

Lemma B.4 For any g(x, y0, · · · , yK) : X ×
YK+1 → R satisfying

g(x, y0, · · · , yK) = g(x, yπ(0), · · · , yπ(K)),

where π is any permutation on {0, 1, · · · ,K}, the
following equality holds for any function f(·, ·) :
X × Y → Rl where l ∈ N+.

E

 K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0, · · · , yK)


=E [g(x, y0, · · · , yK)f(x, y0)] ,

(19)
where (x, y0:K) ∼ pX,Y (x, y0)

∏K
j=1 pN (yj).

Proof: We use g(x, y0:K) to represent
g(x, y0, · · · , yK). By definition,

E

 K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0:K)


=
∑
x,y0:K

pX,Y (x, y0; θ)

K∏
j=1

pN (yj)×

K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0:K)

=
∑
x,y0:K

pX(x)

K∏
j=0

pN (yj)
pY |X(y0|x; θ)

pN (y0)
×

K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0:K)

By symmetry,

E

 K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0:K)


=
∑
x,y0:K

pX(x)
∏K
j=0 pN (yj)

K + 1

K∑
l=0

pY |X(yl|x; θ)

pN (yl)

×
K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0:K)

Plug in the definition of q(j|x, y0:K ; θ∗) and by

symmetry,

E

 K∑
j=0

q(j|x, y0:K ; θ∗)g(x, y0:K)


=
∑
x,y0:K

{pX(x)
∏K
j=0 pN (yj)

K + 1
×

K∑
j=0

pY |X(yj |x)

pN (yj)
g(x, y0:K)

}

=
∑
x,y0:K

pX(x)
K∏
j=0

pN (yj)
pY |X(y0|x)

pN (y0)

× g(x, y0:K)f(x, y0)

=E [g(x, y0:K)f(x, y0)]

�

Lemma B.5 Under the assumptions in Theo-
rem 4.6, as n→∞

√
n
(
θ̂R − θ∗

)
→ N (0, VR)

where VR =

E
[
∇2
θLR(θ∗)

]−1
Var [∇θLR(θ∗)]E

[
∇2
θLR(θ∗)

]−1

Proof: By the Mean-Value Theorem,

∇θLnR(θ̂R) = ∇θLnR(θ∗)+[∫ 1

0
∇2
θLnR

(
θ∗ + t(θ̂R − θ∗)

)
dt

]
(θ̂R − θ∗).

Notice that θ̂R is the maximizer ofLnR(θ). By The-
orem 4.2, θ̂R is strongly consistent. Since θ∗ is in
the interior of a compact set Θ, there exists integer
N such that for all n > N with probability 1, θ̂R
is also in the interior of Θ. So∇θLnR(θ̂R) = 0 and
therefore,

θ̂R − θ∗ = −
[∫ 1

0
∇2
θLnR

(
θ∗ + t(θ̂R − θ∗)

)
dt

]−1

×∇θLnR(θ∗)

On the one hand, by Strong Law of Large Num-
bers, for any θ, almost surely,

∇2
θLnR(θ)→ E[∇2

θLR(θ)].

On the other hand, by Theorem 4.2, θ̂R is strongly
consistent. So for any t ∈ [0, 1]

∇2
θLnR

(
θ∗ + t(θ̂R − θ∗)

)
→ E[∇2

θLR(θ∗)].

Also notice that,

∇θLR(θ∗) = ∇θs̄(x, y0; θ∗)−
K∑
j=0

q(j|x, y0:K ; θ∗)∇θs̄(x, yj ; θ∗).
(20)

By Lemma B.4,

E[LR(θ∗)] = 0.

Hence E[LnR(θ∗)] = 0 and by Central Limit The-
orem,
√
n∇θLnR(θ∗)→ N (0,Var [∇θLR(θ∗)]) . (21)

Combining these facts together,

√
n
(
θ̂R − θ∗

)
→ N (0, VR)

�
Define the matrix WR,K by

WR,K

=E

 K∑
j=0

q(j|x, y0:K ; θ∗)∇θs̄(x, yj ; θ∗)

×
 K∑
j=0

q(j|x, y0:K ; θ∗)∇θs̄(x, yj ; θ∗)

>
 ,

where the expectation is w.r.t. (x, y0, · · · , yK) ∼
pX,Y (x, y0)

∏K
j=1 pN (yj).

Lemma B.6

WR,K =E
[K∑
j=0

q(j|x, y0:K ; θ∗)

×∇θs̄(x, y0; θ∗)∇θs̄(x, yj ; θ∗)>
]

= E
[K∑
j=0

q(j|x, y0:K ; θ∗)

×∇θs̄(x, yj ; θ∗)∇θs̄(x, y0; θ∗)>
]

where the expectation is w.r.t. (x, y0, · · · , yK) ∼
pX,Y (x, y0)

∏K
j=1 pN (yj).

Proof: This follows directly from Lemma B.4.
�

Lemma B.7

E[−∇2
θLR(θ∗)] = Var[∇θLR(θ∗)]

= E[∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>]−WR,K

Proof: Define the shorthand,

qj = q(j|x, y0:K ; θ∗).

Notice that,

∇θLR(θ∗) = ∇θs̄(x, y0; θ∗)−
K∑
j=0

qj∇θs̄(x, yj ; θ∗).

We then have
∇2
θLR(θ∗) = ∇2

θ s̄(x, y0; θ∗)

−
K∑
j=0

qj∇2
θ s̄(x, yj ; θ

∗)

−
K∑
j=0

qj∇θs̄(x, yj ; θ∗)∇θs̄(x, yj ; θ∗)>

+

 K∑
j=0

qj∇θs̄(x, yj ; θ∗)

×
 K∑
j=0

qj∇θs̄(x, yj ; θ∗)

>
:= I1 − I2 − I3 + I4

By Lemma B.4,

E[I1 − I2] = 0

E[I3] = E[∇θs̄(x, y; θ∗)s̄(x, y; θ∗)>].

Hence,

E[−∇2
θLR(θ∗)]

=E[∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>]−WR,K .

By Lemma B.4, E[LR(θ∗)] = 0. Therefore,

Var [∇θLR(θ∗)] = E
[
∇θLR(θ∗)∇θLR(θ∗)>

]
.

Observe that,

∇θLR(θ∗)∇θLR(θ∗)> =

∇θs̄(x, y0; θ∗)∇θs̄(x, y0; θ∗)>

−
K∑
j=0

qj∇θs̄(x, y0; θ∗)∇θs̄(x, yj ; θ∗)>

−
K∑
j=0

qj∇θs̄(x, yj ; θ∗)∇θs̄(x, y0; θ∗)>

+

 K∑
j=0

qj∇θs̄(x, yj ; θ∗)

×
 K∑
j=0

qj∇θs̄(x, yj ; θ∗)

> .

By Lemma B.6,

Var [∇θLR(θ∗)] = E
[
∇θLR(θ∗)∇θLR(θ∗)>

]
= E

[
∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>

]
−WR,K .

Lemma B.8 Under Assumption 4.7, there exists
constant C such that

sup
(x,y)∈X×Y

{
|s̄(x, y; θ∗)|, ‖∇θs̄(x, y; θ∗)‖ ,∥∥∇2

θ s̄(x, y; θ∗)
∥∥} ≤ C.

Proof: By definition,

s̄(x, y; θ∗) = ∇θs(x, y; θ∗) + log pN (y).

Then it follows that,

∇θs̄(x, y; θ∗) = ∇θs(x, y; θ∗),

∇2
θ s̄(x, y; θ∗) = ∇2

θs(x, y; θ∗).

Since pN (y) > 0 for all y ∈ Y and Y is finite,
there exists constant c such that

pN (y) > c.

Therefore,

sup
(x,y)∈X×Y

|s̄(x, y; θ∗)|

≤ sup
(x,y)∈X×Y

|s(x, y; θ∗)|+ log(1/c).

Then the Lemma follows from Assumption 4.7.

Lemma B.9 Under the assumptions in Theo-
rem 4.6, there exists an integer K0 such that for
some constant C and all K ≥ K0,

WR,K = EX
[(

EY |X=x∇θs̄(x, y; θ∗)
)
×(

EY |X=x∇θs̄(x, y; θ∗)
)>]

+ ∆K

and
‖∆K‖ ≤ C/

√
K

Proof: Define the abbreviation

qj = q(j|x, y0:K ; θ∗)

and decompose WR,K into two terms,

WR,K

=E

 K∑
j=0

qj∇θs̄(x, y0; θ∗)∇θs̄(x, yj ; θ∗)>


=E
[
q0∇θs̄(x, y0; θ∗)∇θs̄(x, y0; θ∗)>

]
+E

 K∑
j=1

qj∇θs̄(x, y0; θ∗)∇θs̄(x, yj ; θ∗)>


:= J1 + J2.

By Lemma B.8,

‖J1‖ ≤ sup
x,y

∥∥∥∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>
∥∥∥

× sup
x,y

q0

≤ C2 × exp(C)

K exp(−C)
≤ C1

K

By symmetry,

J2 = K E
[
q1∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

]
Substitute in the definition of q1,

J2 =
∑
x,y0:K

pX(x)pY |X(y0|x)

K∏
i=1

pN (yi)

× exp(s̄(x, y1; θ∗))
1
K

∑K
j=0 exp(s̄(x, yj ; θ∗))

×∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

Notice that

exp(s̄(x, y1; θ∗)) = exp(s(x, y1; θ∗))/pN (y1)

= pY |X(y1|x)Z(x; θ∗)/pN (y1).

Then we can derive

J2 =
∑
x,y0:K

pX(x)pY |X(y0|x)pY |X(y1|x)

×
K∏
i=2

pN (yi)∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

× Z(x; θ∗)
1
K

∑K
i=0 exp(s̄(x, yi; θ∗))

:= J3 + δ,

where

J3 =
∑
x,y0:K

pX(x)pY |X(y0|x)pY |X(y1|x)

×
K∏
i=2

pN (yi)∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

=
∑
x,y0,y1

pX(x)pY |X(y0|x)pY |X(y1|x)

×∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

=
∑
x

pX(x)

(∑
y

pY |X(y|x)∇θs̄(x, y; θ∗)

)

×

(∑
y

pY |X(y|x)∇θs̄(x, y; θ∗)

)>
= EX

[(
EY |X=x∇θs̄(x, y; θ∗)

)
×
(
EY |X=x∇θs̄(x, y; θ∗)

)>]
,

δ =
∑
x,y0:K

pX(x)pY |X(y0|x)pY |X(y1|x)

K∏
i=2

pN (yi)

×∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

×
Z(x; θ∗)− 1

K

∑K
i=0 exp(s̄(x, yi; θ

∗))
1
K

∑K
i=0 exp(s̄(x, yi; θ∗))

=
∑
x,y0:K

pX(x)pN (y0)pN (y1)
K∏
i=2

pN (yi)×

× exp(s̄(x, y0; θ∗))

Z(x; θ∗)

exp(s̄(x, y1; θ∗))

Z(x; θ∗)

× ∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

1
K

∑K
i=0 exp(s̄(x, yi; θ∗))

×

(
Z(x; θ∗)− 1

K

K∑
i=0

exp(s̄(x, yi; θ
∗))

)
.

By Lemma B.8, there exists constant C2 such that

sup
x,y0:K

∥∥∥∥exp(s̄(x, y0; θ∗))

Z(x; θ∗)

exp(s̄(x, y1; θ∗))

Z(x; θ∗)

×∇θs̄(x, y0; θ∗)∇θs̄(x, y1; θ∗)>

1
K

∑K
i=0 exp(s̄(x, yi; θ∗))

∥∥∥∥∥
≤ exp(C)

exp(−C)
× exp(C)

exp(−C)
× C2

exp(−C)
≤ C2.

We then have,

‖δ‖ ≤ C2

∑
x,y0:K

pX(x)

K∏
i=0

pN (yi)

×
∣∣∣Z(x; θ∗)− 1

K

K∑
i=0

exp (s̄(x, yi; θ
∗))
∣∣∣

≤ C2 EpX(x) E∏K
i=1 pN (yi)

∣∣∣Z(x; θ∗)−

1

K

K∑
i=1

exp (s̄(x, yi; θ
∗))
∣∣∣+

C2

K
exp(C)

≤ C2 EpX(x)

(
E∏K

i=1 pN (yi)

∣∣∣Z(x; θ∗)−

1

K

K∑
i=1

exp(s̄(x, yi; θ
∗))
∣∣∣2)1/2

+
C2 exp(C)

K
.

Notice that for any given x and yi ∼ pN (yi),
exp(s̄(x, yi; θ

∗) are I.I.D. random variables with
expectation Z(x; θ∗). Therefore, by Lemma B.8,

E∏K
i=1 pN (yi)

∣∣∣∣∣Z(x; θ∗)− 1

K

K∑
i=1

exp(s̄(x, yi; θ
∗))

∣∣∣∣∣
2

=
1

K
VarY

[
exp (s̄(x, y; θ∗))

]
≤ 1

K
EY
[

exp (2s̄(x, y; θ∗))
]

≤ exp(2C)

K

and for some constant C3,

‖δ‖ ≤ C2
exp(C)√

K
+
C2 exp(C)

K + 1
≤ C3√

K

Combining these facts together,

WR,K = EX
[(

EY |X=x∇θs̄(x, y; θ∗)
)
×(

EY |X=x∇θs̄(x, y; θ∗)
)>]

+ ∆K

where ∆K = J1 + δ and for some constant C4,

‖∆K‖ ≤
C4

K
.

�

Proof of Theorem 4.6. By Lemma B.5 and B.7,

√
n(θ̂R − θ∗)→ N

(
0, I−1

R,K

)
.

where

IR,K = E[∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>]−WR,K .

Notice that

E
[
∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>

]
−

EX
[(

EY |X=x∇θs̄(x, y; θ∗)
)

×
(
EY |X=x∇θs̄(x, y; θ∗)

)>]
= EX EY |X=x

[
∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>−(

EY |X=x∇θs̄(x, y; θ∗)
)

×
(
EY |X=x∇θs̄(x, y; θ∗)

)>]
= EX

[
VarY |X=x [∇θs̄(x, y; θ∗)]

]
= EX

[
VarY |X=x [∇θs(x, y; θ∗)]

]
= Iθ∗ .

where the second last equation follows from the
fact thet

∇θs(x, y; θ) = ∇θs̄(x, y; θ)

for all x, y, θ. So by Lemma B.9,

IR,K = Iθ∗ −∆K .

Since Iθ∗ is non-singular, there exists positive in-
teger K0 such that for any K ≥ K0, σmin(Iθ∗) ≥
2‖∆K‖. So IR,K is positive definite and by
Weyl’s inequality,

σmin(IR,K) ≥ σmin(Iθ∗)−‖∆K‖ ≥ σmin(Iθ∗)/2.

Notice that,

I−1
R,K − I

−1
θ∗ = I−1

θ∗ (Iθ∗ − IR,K)I−1
R,K

= I−1
θ∗ ∆KI−1

R,K .

Then we have∥∥∥I−1
R,K − I

−1
θ∗

∥∥∥ ≤ ∥∥I−1
θ∗

∥∥ ‖∆K‖
∥∥∥I−1

R,K

∥∥∥
≤ 1

σmin(Iθ∗)
× C√

K
× 2

σmin(Iθ∗)

≤ 2C

c2
√
K
.

Finally, notice that θ̂R, θ̂ MLE are asymptotically
unbiased,

|MSE∞(θ̂R)−MSE∞(θ̂ MLE)|
= Tr(I−1

R,K − I
−1
θ∗)/d

≤d‖I−1
R,K − I

−1
θ∗ ‖/d

≤ 2C

c2
√
K

B.2 Proofs for Binary Classification Loss
Recall that for any x, y and parameter (θ, γ), we
have defined

g(x, y; θ, γ) =
exp(s̄(x, y; θ)− γ)

exp(s̄(x, y; θ)− γ) +K
.

Lemma B.10 Under Assumption 2.2,

g(x, y; θ∗, γ∗) =
pY |X(y|x)

pY |X(y|x) +KpN (y)

Proof: Under Assumption 2.2,

pY |X(y|x) = pN (y) exp(s̄(x, y; θ∗)− γ∗).

Hence
pY |X(y|x)

pY |X(y|x) +KpN (y)

=
pN (y) exp(s̄(x, y; θ∗)− γ∗)

pN (y) exp(s̄(x, y; θ∗)− γ∗) +KpN (y)

=
exp(s̄(x, y; θ∗)− γ∗)

exp(s̄(x, y; θ∗)− γ∗) +K

�

Lemma B.11 Define

p(y|x; θ, γ) = exp{s(x, y; θ)− γ}

For any (θ1, γ1), (θ2, γ2), the following three
statements are equivalent:

(1) For all x, y,

p(y|x; θ1, γ1) = p(y|x; θ2, γ2)

(2) For all x, y,

g(x, y; θ1, γ1) = g(x, y; θ2, γ2)

(3) For all x, y,

s(x, y; θ1)− γ1 = s(x, y; θ2)− γ2.

Proof: Since pY (y) > 0 for all y ∈ Y ,

g(x, y; θ, γ) =
p(y|x; θ, γ)

p(y|x; θ, γ) +KpN (y)
,

and hence (1)⇒ (2). Observe that,

s̄(x, y; θ)−γ = log

(
g(x, y; θ, γ)

1− g(x, y; θ, γ)

)
+log(K)

and by definition

s(x, y; θ) = s̄(x, y; θ) + log pN (y)

We then have (2) ⇒ (3). Finally, (3) ⇒
(1) is obtained by plugging in the definition of
g(x, y; θ, γ). �

B.2.1 Proof of Theorem 4.3
Notice that L∞B (θ, γ) =

∑
x,y f(θ, γ;x, y), where

f(θ, γ;x, y)

=pX,Y (x, y) log (g(x, y; θ, γ))

+KpX(x)pN (y) log (1− g(x, y; θ, γ))

=
(
pX,Y (x, y) +KpX(x)pN (y)

)
{

pY |X(y|x)

pY |X(y|x) +KpN (y)
log (g(x, y; θ, γ)) +

KpN (y)

pY |X(y|x) +KpN (y)
log (1− g(x, y; θ, γ))

}
.

By Lemma B.1 and B.10, (θ∗, γ∗) ∈
arg max f(θ, γ;x, y) for all x, y. Then for
any (θ̄, γ̄) ∈ arg maxL∞B (θ, γ), it must be the
case that (θ̄, γ̄) maximizes f(θ, γ;x, y) for all x, y
simultaneously. It follows from Lemma B.1 that

exp(s̄(x, y; θ̄)− γ̄)

exp(s̄(x, y; θ̄)− γ̄) +K

=
pY |X(y|x)

pY |X(y|x) +KpN (y)

=
exp(s̄(x, y; θ∗)− γ∗)

exp(s̄(x, y; θ∗)− γ∗) +K
.

By Lemma B.11, this is equivalent to

s̄(x, y; θ̄)− γ̄ = s̄(x, y; θ∗)− γ∗ (22)

which implies,

s(x, y; θ̄)− γ̄ = s(x, y; θ∗)− γ∗ (23)

and therefore

p(y|x; θ̄, γ̄) = p(y|x; θ∗, γ∗),

which proves the first part of the theorem. Under
Assumption 4.4, equation (23) implies (θ̄, γ̄) =
(θ∗, γ∗), that is Ω∗B is a singleton. On the other
hand, if there exists constant c and parameter θ̄
such that for all x, y

s(x, y; θ̄)− s(x, y; θ∗) = c.

We then have

γ̄ = log

(∑
x,y

pX(x) exp(s(x, y; θ∗) + c)

)
= c+ γ∗

and

s(x, y; θ̄)− γ̄ = s(x, y; θ∗)− γ∗.

It follows from Lemma B.1 and B.11 that (θ̄, γ̄) ∈
arg maxL∞B (θ, γ). So if Ω∗B is a singleton, it must
be the case that θ̄ = θ∗, γ̄ = γ∗. This proves the
second part of the theorem.

B.2.2 Proof of Theorem 4.4
The proof is very similar to the proof of Theo-
rem 4.2 and we leave out the details.

B.2.3 Proof of Theorem 4.5
The proof is very similar to the proof of Theo-
rem 4.6 and the proof of Theorem 4.7. We leave
out the details.

B.2.4 Proof of Theorem 4.7
Define β = (θ, γ), β̂ = (θ̂B, γ̂B), β∗ = (θ∗, γ∗)
and

s̃(x, y;β) = s̄(x, y; θ)− γ − logK.

Then the objective function LnB(θ, γ) could be
written as the average of n I.I.D. random variables
L

(i)
B (β), 1 ≤ i ≤ n.

LnB(θ, γ) =
1

n

n∑
i=1

{
log

(
exp(s̃(x(i), y(i,0);β))

1 + exp(s̃(x(i), y(i,0);β))

)

+

K∑
j=1

log

(
1

1 + exp(s̃(x(i), y(i,j);β))

)}

=
1

n

n∑
i=1

{
log σ(s̃(x(i), y(i);β))

+

K∑
j=1

log(1− σ(s̃(x(i), y(i,j);β)))
}

:=
1

n

n∑
i=1

L
(i)
B (β).

(24)

Define

LB(β) = log σ(s̃(x, y0;β))

+
K∑
j=1

log(1− σ(s̃(x, yj ;β)),

where (x, y0:K) ∼ pX,Y (x, y0)
∏K
j=1 pN (yj).

Then we have

(x(i), y(i,0:K)) =d (x, y0, · · · , yK)

L
(i)
B (β) =d LB(β), 1 ≤ i ≤ n,

where =d represents equal in distribution.
Throughout the proof, we will repeatedly use

the following facts

σ′(x) = σ(x)(1− σ(x)), (25)

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))

=KpX(x)pN (y)σ(s̃(x, y;β∗)).
(26)

Lemma B.12 For any function f(·, ·) : X ×Y →
Rm,m ∈ N+,

E
[

(1− σ(s̃(x, y0;β∗))) f(x, y0)

−
K∑
j=1

σ(s̃(x, y0;β∗))f(x, yj)
]

= 0

where (x, y0:K) ∼ pX,Y (x, y0)
∏K
j=1 pN (yj).

Proof: By definition,

E

 K∑
j=1

σ(s̃(x, yj ;β
∗))f(x, yj)


=K

∑
x,y

pX(x)pN (y)σ(s̃(x, y;β∗))f(x, y).

By equality (26),

E

 K∑
j=1

σ(s̃(x, yj ;β
∗))f(x, yj)


=
∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))f(x, y)

=E[(1− σ(s̃(x, y0;β∗)))f(x, y0)]

�

Lemma B.13 Under the assumptions in Theo-
rem 4.7, as n→∞

√
n
(
β̂B − β∗

)
→ N (0, VB)

where VB is defined as

E
[
∇2
βLB(β∗)

]−1
Var [∇βLB(β∗)]E

[
∇2
βLB(β∗)

]−1

Proof: The proof follows the same arguments as
the proof of Lemma B.5 and we leave out the de-
tails.
�

Define the following quantities,

µ̃x,K := EY |X=x

[
(1− σ(s̃(x, y;β∗)))

×∇β s̃(x, y;β∗)
]
,

W̃K := EpX,Y
[
(1− σ(s̃(x, y;β∗)))×

∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>
]
.

Lemma B.14

E[−∇2
βLB(β∗)] = W̃K

Var [∇βLB(β∗)] = W̃K−
K + 1

K
EX [µ̃x,K(µ̃x,K)>]

Proof: By straightforward calculation,

∇βLB(β∗) = (1− σ(s̃(x, y0;β∗)))∇β s̃(x, y0;β∗)

−
K∑
j=1

σ(s̃(x, yj ;β
∗))∇β s̃(x, yj ;β∗)

∇2
βLB(β∗) = −σ(s̃(x, y0;β∗))(1− σ(s̃(x, y0;β∗)))

×∇β s̃(x, y0;β∗)∇β s̃(x, y0;β∗)>

+ (1− σ(s̃(x, y0;β∗)))∇2
β s̃(x, y0;β∗)

−
K∑
j=1

σ(s̃(x, yj ;β
∗))∇2

β s̃(x, yj ;β
∗)

−
K∑
j=1

σ(s̃(x, yj ;β
∗))(1− σ(s̃(x, yj ;β

∗)))

×∇β s̃(x, yj ;β∗)∇β s̃(x, yj ;β∗)>

:= −I1 + I2 − I3 − I4

By Lemma B.12,

E[I2 − I3] = 0.

Since (x, y0) ∼ pX,Y (x, y0) and (x, yj) ∼
pX(x)pN (yj) for all j ≥ 1,

E[I1] =
∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))

× σ(s̃(x, y;β∗))∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>

E[I4] = K
∑
x,y

pX(x)pN (y)(1− σ(s̃(x, y;β∗)))

× σ(s̃(x, y;β∗))∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>

By equality (26),

E[I4] =
∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))2

×∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>

Therefore,

E[−∇2
βLB(β∗)] = E [I1 + I4]

=
∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))

×∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>

= W̃K

By Lemma B.12, E[LB(β∗)] = 0 and hence

Var [LB(β∗)] = E[∇βLB(β∗)∇βLB(β∗)>].

Observe that,

∇βLB(β∗)∇βLB(β∗)> = I1 − I2 − I>2 + I3

where

I1 = (1− σ(s̃(x, y0;β∗)))2

×∇β s̃(x, y0;β∗)∇β s̃(x, y0;β∗)>,

I2 =
K∑
j=1

σ(s̃(x, yj ;β
∗))(1− σ(s̃(x, y0;β∗)))

×∇β s̃(x, yj ;β∗)∇β s̃(x, y0;β∗)>,

I3 =

K∑
j=1

K∑
l=1

σ(s̃(x, yj ;β
∗))σ(s̃(x, yl;β

∗))

×∇β s̃(x, yj ;β∗)∇β s̃(x, yl;β∗)>.

By definition,

E[I1] =
∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))2

×∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>.

Notice that (x, y0, yj) ∼ pX,Y (x, y0)pN (yj),

E[I2] = K
∑
x,y,ỹ

pX,Y (x, y)pN (ỹ)

× σ(s̃(x, ỹ;β∗))(1− σ(s̃(x, y;β∗)))

×∇β s̃(x, ỹ;β∗)∇β s̃(x, y;β∗)>

By equation (26),

E[I2] =
∑
x,y,ỹ

pX(x)pY |X(y|x)pY |X(ỹ|x)

× (1− σ(s̃(x, ỹ;β∗)))(1− σ(s̃(x, y;β∗)))

×∇β s̃(x, ỹ;β∗)∇β s̃(x, y;β∗)>

=
∑
x

pX(x)µ̃x,K µ̃
>
x,K

= EX [µ̃x,K(µ̃x,K)>].

We decompose I3 into two parts:

I3 =

K∑
j=1

σ2(s̃(x, yj ;β
∗))

×∇β s̃(x, yj ;β∗)∇β s̃(x, yj ;β∗)>

+
∑

1≤j 6=l≤k
σ(s̃(x, yj ;β

∗))σ(s̃(x, yl;β
∗))

×∇β s̃(x, yj ;β∗)∇β s̃(x, yl;β∗)>

= I1
3 + I2

3

Notice that (x, yj) ∼ pX(x)pN (yj), then again by
equation (26),

E[I1
3] = K

∑
x,y

pX(x)pN (y)σ2(s̃(x, y;β∗))

×∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>

=
∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))

× σ(s̃(x, y;β∗))∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)>,

E[I1 + I1
3] =

∑
x,y

pX,Y (x, y)(1− σ(s̃(x, y;β∗)))

×∇β s̃(x, y;β∗)∇β s̃(x, y;β∗)> = W̃K

Also notice that (x, yj , yl) ∼ pX(x)pN (yj)pN (yl)
for 1 ≤ l 6= j ≤ K,

E[I2
3] = (K2 −K)

∑
x,y,ỹ

pX(x)pN (y)pN (ỹ)

× σ(s̃(x, y;β∗))σ(s̃(x, ỹ;β∗))

×∇β s̃(x, y;β∗)∇β s̃(x, ỹ;β∗)>

= (1− 1/K)
∑
x

pX(x)µ̃x,K(µ̃x,K)>

= (1− 1/K)EX [µ̃x,K(µ̃x,K)>].

where we apply equation (26) to obtain the second
equality. Combining these quantities,

Var [∇βLB(β∗)] = W̃K−
(1 + 1/K)EX [µ̃x,K(µ̃x,K)>]

�
Define the following quantities,

µ = E[∇θs̄(x, y; θ∗)], µ̃ =

[
µ
−1

]
,

µ̃x =

[
EY |X=x[∇θs̄(x, y; θ∗)]

−1

]
, W̃ =

[
W −µ
−µ> 1

]
W = E

[
∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>

]
,

ṼK = W̃−1
K

(
W̃K−

K + 1

K
EX
[
µ̃x,K(µ̃x,K)>

])
W̃−1
K

Ṽ = W̃−1
(
W̃ − µ̃µ̃>

)
W̃−1

Lemma B.15 Under Assumption 2.2, the Fisher
information matrix can be simplified to

Iθ∗ = VarX,Y [∇θs(x, y; θ∗)].

Proof: Notice that

1 =
∑
y∈Y

pY |X(y|x) =
∑
y∈Y

exp(s(x, y; θ∗) + γ∗)

1 =
∑
x∈X

∑
y∈Y

pX,Y (x, y)

=
∑
x∈X

∑
y∈Y

pX(x) exp(s(x, y; θ∗)− γ∗).

Hence,

exp(γ∗) =
∑
y∈Y

exp(s(x, y; θ∗))

=
∑
x∈X

∑
y∈Y

pX(x) exp(s(x, y; θ∗)).

Take derivative w.r.t. θ on both sides,∑
y∈Y

exp(s(x, y; θ∗))∇θs(x, y; θ∗)

=
∑
x∈X

∑
y∈Y

pX(x) exp(s(x, y; θ∗))∇θs(x, y; θ∗)

which implies

EY |X=x[∇θs(x, y; θ∗)]

=
∑
x∈X

∑
y∈Y

pX(x) exp(s(x, y; θ∗)− γ∗)

×∇θs(x, y; θ∗)

=EX,Y [∇θs(x, y; θ∗)] .

So EY |X=x[∇θs(x, y; θ∗)] is independent of x and

VarX
[
EY |X=x[∇θs(x, y; θ∗)]

]
= 0.

Finally, by the law of total variance,

VarX,Y [∇θs(x, y; θ∗)]

=EX
[
VarY |X=x[∇θs(x, y; θ∗)]

]
+ VarX

[
EY |X=x[∇θs(x, y; θ∗)]

]
=EX

[
VarY |X=x[∇θs(x, y; θ∗)]

]
+ 0

=Iθ∗

�

Lemma B.16 Under the assumptions in Theo-
rem 4.7, W and W̃ are non-singular and

Ṽ =

[
I−1
θ∗

W−1µ
1−µ>W−1µ

µ>W−1

1−µ>W−1µ
µ>W−1Iθ∗W−1µ

(1−µ>W−1µ)2

]

Proof: Notice that,

W − µµ> = E[∇θs̄(x, y; θ∗)∇θs̄(x, y; θ∗)>]

− E[∇θs̄(x, y; θ∗)]E[∇θs̄(x, y; θ∗)]>

= Var[∇θs̄(x, y; θ∗)]

By Lemma B.15,

W = Iθ∗ + µµ>.

Since Iθ∗ is non-singular, W is strictly positive
definite and by Sherman–Morrison formula,

W−1 = I−1
θ∗ −

I−1
θ∗ µµ

>I−1
θ∗

1 + µ>I−1
θ∗ µ

and

µ>W−1µ =
µ>I−1

θ∗ µ

1 + µ>I−1
θ∗ µ

> 0.

Therefore, by block matrix inversion formula, W̃
is non-singular and

W̃−1 =

[
W −µ
−µ> 1

]−1

=

[
I−1
θ∗

W−1µ
1−µ>W−1µ

µ>W−1

1−µ>W−1µ
1

1−µ>W−1µ

]
.

Notice that,

W̃ − µ̃µ̃> =

[
Iθ∗ 0
0 0

]
.

We then have,

W̃−1
(
W̃ − µ̃µ̃>

)
W̃−1

=

[
I−1
θ∗

W−1µ
1−µ>W−1µ

µ>W−1

1−µ>W−1µ
µ>W−1Iθ∗W−1µ

(1−µ>W−1µ)2

]
.

�

Lemma B.17 Under the assumptions in Theo-
rem 4.7, there exists an integer K0 and positive
constant C > 0 such that for all K ≥ K0, W̃K is
non-singular and

sup
x
‖µ̃x,K − µ̃x‖ ,

∥∥∥W̃−1
K − W̃−1

∥∥∥ ≤ C/K∥∥∥EX [µ̃x,K(µ̃x,K)>]− EX
[
µ̃xµ̃

>
x

]∥∥∥ ≤ C/K∥∥∥EX [µ̃x,K(µ̃x,K)>]
∥∥∥ , ∥∥∥W̃−1

K

∥∥∥ ≤ C

Proof: By definition and Lemma B.8,

σ(s̃(x, y;β∗)) =
exp(s̄(x, y; θ∗) + γ∗)

K + exp(s̄(x, y; θ∗) + γ∗)

≤
supx,y exp(s̄(x, y; θ∗) + γ∗)

K

≤ C1

K
.

Notice that,

µ̃x,K = EY |X=x

[
∇θs̄(x, y; θ∗)

1

]
− EY |X=x σ(s̃(x, y;β∗)

[
∇θs̄(x, y; θ∗)

1

]
=µ̃x −∆µ̃x,K

where ∆µ̃x,K =

EY |X=x

[
σ(s̃(x, y;β∗))

[
∇θs̄(x, y; θ∗)

1

]]
Again by Lemma B.8,

∥∥∆µ̃x,K

∥∥ ≤ C1

K
sup
x,y

∥∥∥∥[∇θs̄(x, y; θ∗)
1

]∥∥∥∥
≤ C1(C + 1)

K
.

Observe that EX
[
µ̃x,K(µ̃x,K)>

]
= EX

[
µ̃xµ̃

>
x

]
+

∆µ, where

∆µ = EX
[
µ̃x∆>µ̃x,K

]
+ EX

[
∆µ̃x,K µ̃

>
x

]
+ EX

[
∆µ̃x,K∆>µ̃x,K

]
.

Similarly, by Lemma B.8, supx ‖µ̃x‖ ≤ C + 1.
Therefore, there exist constants C3, C4 such that

‖∆µ‖ ≤ 2 sup
x
‖µ̃x‖ sup

x

∥∥∆µ̃x,K

∥∥
+ sup

x

∥∥∆µ̃x,K

∥∥2

≤ C3

K
,∥∥∥EX [µ̃x,K(µ̃x,K)>
]∥∥∥ ≤ sup

x
‖µ̃x‖2+‖∆µ‖ ≤ C4.

On the other hand, W̃K = W̃ + ∆
W̃K

, where

∆
W̃K

= E
[
σ(s̃(x, y;β∗))

×
[
∇θs̄(x, y; θ∗)

1

] [
∇θs̄(x, y; θ∗)

1

]>]
.

By the same reasoning,∥∥∥∆
W̃K

∥∥∥
≤C1

K
sup
x,y

∥∥∥∥∥
[
∇θs̄(x, y; θ∗)

1

] [
∇θs̄(x, y; θ∗)

1

]>∥∥∥∥∥
≤C1(C + 1)2

K
.

Let σmin(·) denote the smallest singular value a
matrix. By Lemma B.16, W̃ is non-singular. So
there exists K0 such that σmin

(
W̃
)
≥ 2

∥∥∥∆
W̃K

∥∥∥.
Therefore, for any K ≥ K0, by Weyl’s inequality,

σmin

(
W̃K

)
≥ σmin

(
W̃
)
−
∥∥∥∆

W̃K

∥∥∥
≥ σmin

(
W̃
)
/2.

Then∥∥∥W̃−1
K

∥∥∥ =
1

σmin

(
W̃K

) ≤ 2

σmin

(
W̃
) .

This implies,∥∥∥W̃−1
K − W̃−1

∥∥∥
=
∥∥∥W̃−1(W̃ − W̃K)W̃−1

K

∥∥∥
≤
∥∥W−1

K

∥∥∥∥∥W̃ − W̃K

∥∥∥∥∥∥W̃−1
∥∥∥

≤ 2

σmin

(
W̃
) × ∥∥∥∆

W̃K

∥∥∥× 1

σmin(W̃)

≤2C1(C + 1)2

σmin(W̃)2K

≤C5

K

for some constant C5. �

Proof of Theorem 4.7. By Lemma B.13 and
Lemma B.14,

√
n(β̂ − β∗)→ N (0, ṼK),

ṼK − Ṽ =
(
W̃−1
K − W̃−1

)
− 1

K
W̃−1
K EX

[
µ̃x,K(µ̃x,K)>

]
W̃−1
K

+
(
W̃−1
K − W̃−1

)
EX
[
µ̃x,K(µ̃x,K)>

]
W̃−1
K

+ W̃−1
(
EX
[
µ̃x,K(µ̃x,K)>

]
− EX

[
µ̃xµ̃

>
x

])
W̃−1
K

+ W̃−1 EX
[
µ̃xµ̃

>
x

] (
W̃−1
K − W̃−1

)

Applying Lemma B.17, there exist constants C
and integer K ′ such that for some constant C and
all K ≥ K ′. ∥∥∥ṼK − Ṽ ∥∥∥ ≤ C/K.
Recall θ ∈ Rd. Define VK as the upper d×d block
of ṼK . Since I−1

θ∗ is the upper d × d block of Ṽ ,
for all K ≥ K ′,∥∥VK − I−1

θ∗

∥∥ ≤ ∥∥∥ṼK − Ṽ ∥∥∥ ≤ C/K.
Choose K0 large enough such that K0 ≥ K ′ and

σmin(I−1
θ∗) ≥ 2C/K0.

Then by Weyl’s inequality, for all K ≥ K0

σmin(VK) ≥ σmin(I−1
θ∗)−

∥∥VK − I−1
θ∗

∥∥
≥ σmin(I−1

θ∗)− C/K ≥ σmin(I−1
θ∗)/2.

Therefore, VK is non-singular and we can define
IB,K = V −1

K . Then for all K ≥ K0

√
n(θ̂B − θ∗)→ N (0, I−1

B,K).∥∥∥I−1
B,K − I

−1
θ∗

∥∥∥ =
∥∥VK − I−1

θ∗

∥∥ ≤ C/K.
Finally, notice that θ̂B, θ̂ MLE are asymptotically
unbiased,

|MSE∞(θ̂B)−MSE∞(θ̂ MLE)|
=|Tr(I−1

B,K − I
−1
θ∗)/d|

≤d‖I−1
R,K − I

−1
θ∗ ‖/d ≤ C/K.

