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Semantic Parsing with Execution

Text 

 

 

Meaning 
Representation

Denotation 
(Answer) 

Environment   Semantic Parsing

Execution
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Semantic Parsing with Execution

“What nation scored the 
  most points?” 

 

 

Select Nation 
Where Points is Max

“England”

Environment   Semantic Parsing

Execution

Index Name Nation Points Games Pts/game

1 Karen Andrew England 44 5 8.8

2 Daniella Waterman England 40 5 8

3 Christelle Le Duff France 33 5 6.6

4 Charlotte Barras England 30 5 6

5 Naomi Thomas Wales 25 5 5
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• No gold programs during training

Indirect Supervision

“What nation scored the 
  most points?” 

 

 

Select Nation 
Where Points is Max

“England”

Environment   Semantic Parsing

Execution

Index Name Nation Points Games Pts/game

1 Karen Andrew England 44 5 8.8

2 Daniella Waterman England 40 5 8

3 Christelle Le Duff France 33 5 6.6

4 Charlotte Barras England 30 5 6

5 Naomi Thomas Wales 25 5 5
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● Neural Model
○ x: “What nation scored the most points?”
○ y:  Select Nation Where Index is Minimum   
○ neural models ⇒ score(x, y): encode x, encode y, and produce scores 

● Argmax procedure
○ Beamseach:   argmax score(x, y)

● Indirect supervision
○ Find approximated gold meaning representations
○ Reinforcement learning algorithms

Learning 
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• Question: “What nation scored the most points?”
• Answer: “England”

Semantic Parsing with Indirect Supervision

Index Name Nation Points Games Pts/game

1 Karen Andrew England 44 5 8.8

2 Daniella Waterman England 40 5 8

3 Christelle Le Duff France 33 5 6.6

4 Charlotte Barras England 30 5 6

5 Naomi Thomas Wales 25 5 5

For Training
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Search for Training

• A correct program should execute to the gold answer.
• In general, there are several spurious programs that execute to 

the gold answer but are semantically incorrect.
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Select Nation Where Points = 44      ⇒  “England”
Select Nation Where Index is Minimum ⇒  “England”
Select Nation Where Pts/game is Maximum ⇒  “England”
Select Nation Where Point is Maximum ⇒  “England”

Search for Training: Spurious Programs

• Search for training. Goal: find semantically correct parse!
• Question: “What nation scored the most points?”

• All programs above generate right answers but only one is correct.
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Update Step

• Generally there are several methods to update the model.
• Examples: maximum marginal likelihood, reinforcement 

learning, margin methods.
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● (1)  Policy Shaping for handling spurious programs
(2) Generalized Update Equation for generalizing 
common update strategies and allowing novel updates.

● (1) and (2) seem independent, but they interact with 
each other!! 

● 5% absolute improvement over SOTA on SQA dataset

Contributions
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Learning from Indirect Supervision

1

2

[Search for Training] With x, t, z,  beam search suitable Κ={y’}

[Update] Update θ,  according K = {y’}

11

● Question x, Table t, Answer z, Parameters θ



Spurious Programs

• If the model selects a spurious program for 
update then it increases the chance of selecting 
spurious programs in future.

1

● Question x, Table t, Answer z, Parameters θ

[Search for Training] With x, t, z,  beam search suitable {y’}
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Policy Shaping [Griffith et al., NIPS-2013]
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Search with Shaped Policy

1

 

1

● Question x, Table t, Answer z, Parameters θ

[Search for Training] With x, t, z, beam search suitable {y’}
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1. Surface-form Match: Features triggered for constants in the 
program that match a token in the question.

2. Lexical Pair Score: Features triggered between keywords 
and tokens (e.g., Maximum and “most”).

 

Critique Policy
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Critique Policy Features

Select Nation Where Points = 44
Select Nation Where Index is Minimum
Select Nation Where Pts/game is  Maximum
Select Nation Where Points is Maximum
Select Nation Where Name = Karen Andrew

Question: “What nation scored the most points?”

lexical pair match

surface-form match 16



Learning Pipeline Revisited

1

2

[Search for Training] With x, t, z,  beam search suitable Κ={y’}

[Update] Update θ,  according K = {y’}

● Using policy shaping to find “better” K 

● What is the better objective function Jθ?

⇐ Shaping affects here 
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Objective Functions Look Different!
● Maximum Marginal Likelihood (MML)

● Reinforcement learning (RL)

● Maximum Margin Reward (MMR)

Most violated program generated 
according to reward augment inference

Maximum Reward Program

18



Update Rules are Similar
● Maximum Marginal Likelihood (MML)

● Reinforcement learning (RL)

● Maximum Margin Reward (MMR)

19



Generalized Update Equation

2 [Update] Update θ,  according K = {y’}
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● MMR

● MAVER

Improvement over Margin Approaches



Results on SQA: Answer Accuracy (%)

• Policy shaping helps improve performance. 
• With policy shaping, different updates matters even more
• Achieves new state-of-the-art (previously 44.7%) on SQA
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Comparing Updates

23

● MMR and MAVER are more “aggressive” than MML
○ MMR and MAVER update towards to one program
○ MML updates toward to all programs that can generate the 

correct answer

MML:

MMR:



● Discussed problem with search and update steps in
semantic parsing from denotation. 

● Introduced policy shaping for biasing the search away from 
spurious programs.

● Introduced generalized update equation that generalizes 
common update strategies and allows novel updates.

● Policy shaping allows more aggressive update!

Conclusion
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BACKUP
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Generalized Update as an Analysis Tool
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● MMR and MAVER are more “aggressive” than MML
○ MMR and MAVER only pick one
○ MML gives credits to all {y} that satisfies {z}
○ MMR and MAVER benefit more from shaping



Learning from Indirect Supervision

1

2

● Question x, Table t, Answer z, Parameters θ

[Search for Training] With x, t, z,  beam search suitable {y’}

[Update] Update θ,  according {y’}

● Search in training. Goal: finding semantically correct y’

● Many different ways of update θ 
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Shaping and update

1

2

Better search ⇒ more aggressive update

[Search for Training] With x, t, z,  beam search suitable Κ={y’}

[Update] Update θ,  according K = {y’}

● Using policy shaping to find “better” K 

● What is the better objective function Jθ?

⇐ Shaping affects here directly

⇐ Shaping affects here indirectly
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• Mixing the MMR’s intensity and MML’s competing distribution 
gives an update that outperforms MMR.

Novel Learning Algorithm

Intensity Competing Distribution Dev Performance

w/o shaping

Maximum Marginal Likelihood 
(MML)

Maximum Marginal Likelihood 
(MML) 32.4

Maximum Margin Reward (MMR) Maximum Margin Reward (MMR) 40.7

Maximum Margin Reward (MMR) Maximum Marginal Likelihood 
(MML) 41.9
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Novel Learning Algorithms
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Learning Method #1 – 
Maximum Marginal Likelihood (MML)
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Learning Method #2 – 
Reinforcement Learning (RL)
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Learning Method #3 – 
Maximum Margin Reward (MMR)
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Learning Method #4 – 
Maximum Margin Average Violation Reward 
(MAVER)
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