Policy Shaping and Generalized Update Equations for Semantic Parsing from Denotations

Dipendra Misra^{*}, Ming-Wei Chang[†], Xiaodong He^{\circ} and Wen-tau Yih[‡]

Cornell University
 [†]Google Al Language
 ^{\$}JD Al Research
 [‡]Allen Institute for Artificial Intelligence

Semantic Parsing with Execution

Semantic Parsing with Execution

Indirect Supervision No gold programs during training "What nation scored the most points?" χ Environment Semantic Parsing Select Nation Index Name Points Games Pts/game Nation Where Points is Max 8.8 Karen Andrew England 44 5 1 Daniella Waterman 40 5 2 England 8 Execution Christelle Le Duff 33 5 6.6 3 France Z"England" **Charlotte Barras** England 30 5 4 6 Naomi Thomas 25 5 5 5 Wales

Learning

• Neural Model

- x: "What nation scored the most points?"
- y: Select Nation Where Index is Minimum
- neural models \Rightarrow score(x, y): encode x, encode y, and produce scores

• Argmax procedure

• Beamseach: argmax score(x, y)

• Indirect supervision

- Find approximated gold meaning representations
- Reinforcement learning algorithms

Semantic Parsing with Indirect Supervision

- Question: "What nation scored the most points?"
- Answer: "England"

Index	Name	Nation	Points	Games	Pts/game
1	Karen Andrew	England	44	5	8.8
2	Daniella Waterman	England	40	5	8
3	Christelle Le Duff	France	33	5	6.6
4	Charlotte Barras	England	30	5	6
5	Naomi Thomas	Wales	25	5	5

, Step 1: Search For Training

Select Nation Where Points = 44 Select Nation Where Index is Minimum Select Nation Where Pts/game is Maximum Select Nation Where Points is Maximum Select Nation Where Name = Karen Andrew

Maximum Marginal Reinfo Likelihood Lea

Reinforcement Learning Margin Methods

Search for *Training*

Goal

Find the correct program and high-scoring incorrect programs.

- A correct program should execute to the gold answer.
- In general, there are several spurious programs that execute to the gold answer but are semantically incorrect.

Challenge

Distinguish the correct program from spurious programs.

Search for Training: Spurious Programs

- Search for training. Goal: find semantically correct parse!
- Question: "What nation scored the most points?"

Select Nation Where Points = 44 Select Nation Where Index is Minimum Select Nation Where Pts/game is Maximum Select Nation Where Point is Maximum

- \Rightarrow "England"
- \Rightarrow "England"
- \Rightarrow "England"
- \Rightarrow "England"

• All programs above generate right answers but only one is correct.

Update Step

Goal

Update the model using the programs found by search.

- Generally there are several methods to update the model.
- Examples: maximum marginal likelihood, reinforcement learning, margin methods.

Challenge

Find the right update strategy from various possibilities.

Contributions

- (1) <u>Policy Shaping</u> for handling spurious programs
 (2) <u>Generalized Update Equation</u> for generalizing common update strategies and allowing novel updates.
- (1) and (2) seem independent, but they interact with each other!!
- 5% absolute improvement over SOTA on SQA dataset

Learning from Indirect Supervision

• Question **x**, Table **t**, Answer **z**, Parameters θ

(1) [Search for Training] With x, t, z, beam search suitable K={y'}

11

Spurious Programs

• Question **x**, Table **t**, Answer **z**, Parameters θ

[Search for Training] With x, t, z, beam search suitable {y'}

• If the model selects a spurious program for update then it increases the chance of selecting spurious programs in future.

Policy Shaping [Griffith et al., NIPS-2013]

- Policy shaping is a way to incorporate prior knowledge.
- Formally, given a policy $p_{\theta}(y|x,t)$ and a critique policy q(y|x,t) containing prior knowledge, we define

$$p_s(y|x,t) \propto p_{\theta}(y|x,t) q(y|x,t)$$

as our shaped policy.

Search with Shaped Policy

• Question x, Table t, Answer z, Parameters θ

(1) [Search for Training] With x, t, z, beam search suitable {y'}

• Perform beam search using the shaped policy score. $p_s(y|x,t) \propto p(y|x,t)q(y|x,t)$

Critique Policy

- Contains prior knowledge to bias the model away from spurious programs.
- We consider the following simple critique policy: $q(y \mid x, t) \propto \exp\{\eta \times \operatorname{critique}(y, x, t)\}$ where critique contains the following two scores:
 - 1. Surface-form Match: Features triggered for constants in the program that match a token in the question.
 - 2. Lexical Pair Score: Features triggered between keywords and tokens (e.g., Maximum and "*most*").

Critique Policy Features lexical pair match Question: "What nation scored the most points?" Select Nation Where Points = 44 Select Nation Where Index is Minimum Select Nation Where Pts/game is Maximum Select Nation Where Points is Maximum Select Nation Where Name - Karen Andrew surface-form match

Learning Pipeline Revisited

• Using policy shaping to find "better" K

 Shaping affects here

2 [Update] Update θ, according K = {y'}

• What is the better objective function

Objective Functions Look Different!

• Maximum Marginal Likelihood (MML)

$$J = \log p(z \mid x, t) = \log \sum_{y \in \mathcal{K}} p(z, y \mid x, t) = \log \sum_{y \in \mathcal{K}} p(z \mid y) p(y \mid x, t)$$

Reinforcement learning (RL)

$$J = \sum_{y \in \mathcal{K}} p(y \mid x, t) R(y, z)$$

• Maximum Margin Reward (MMR)

Maximum Reward Program

$$J = -1\{|\mathcal{V}| > 0\}\{\texttt{score}(\bar{y}, x, t) - \texttt{score}(\hat{y}, x, t) + \delta(\hat{y}, \bar{y}, z)\}$$

Most violated program generated according to reward augment inference

Update Rules are Similar

• Maximum Marginal Likelihood (MML)

$$\nabla J = \sum_{y \in \mathcal{K}} \frac{p(z, y \mid x, t)}{\sum_{y'} p(z, y' \mid x, t)} \left\{ \nabla \text{score}(y, x, t) - \sum_{y' \in \mathcal{K}} p(y' \mid x, t) \nabla \text{score}(y', x, t) \right\}$$

• Reinforcement learning (RL)

$$\nabla J = \mathbf{1} \left\{ \nabla \mathtt{score}(y_{samp}, x, t) - \sum_{y' \in \mathcal{K}} p(y' \mid x, t) \nabla \mathtt{score}(y', x, t) \right\}$$

Maximum Margin Reward (MMR)

$$\nabla J = \mathbf{1} \left\{ \nabla \mathtt{score}(\hat{y}, x, t) - \sum_{y' \in \mathcal{K}} \mathbf{1}[y' = \bar{y}] \nabla \mathtt{score}(y', x, t) \right\}$$

Generalized Update Equation

1

$$\Delta = \sum_{y \in \mathcal{K}} w(y, x, t) \left\{ \nabla \texttt{score}(y, x, t) - \sum_{y' \in \mathcal{K}} q(y' \mid x, t) \nabla \texttt{score}(y', x, t) \right\}$$

Empirically determine w and q.

Improvement over Margin Approaches

• MMR

$$\nabla J = \mathbf{1} \left\{ \nabla \texttt{score}(\hat{y}, x, t) - \sum_{y' \in \mathcal{K}} \mathbf{1}[y' = \bar{y}] \nabla \texttt{score}(y', x, t) \right\}$$

• MAVER

$$\nabla J = \mathbf{1} \left\{ \nabla \texttt{score}(\hat{y}, x, t) - \sum_{y' \in \mathcal{K}} \frac{\mathbf{1}\{y' \in \mathcal{V}\}}{|\mathcal{V}|} \nabla \texttt{score}(y', x, t) \right\}$$

Results on SQA: Answer Accuracy (%)

- Policy shaping helps improve performance.
- With policy shaping, different updates matters even more
- Achieves new state-of-the-art (previously 44.7%) on SQA

Comparing Updates

$$\mathsf{MML:} \quad \nabla J = \sum_{y \in \mathcal{K}} \frac{p(z, y \mid x, t)}{\sum_{y'} p(z, y' \mid x, t)} \begin{cases} \nabla \mathsf{score}(y, x, t) - \sum_{y' \in \mathcal{K}} p(y' \mid x, t) \nabla \mathsf{score}(y', x, t) \\ y' \in \mathcal{K} \end{cases}$$

$$\nabla J = \mathbf{1} \left\{ \nabla \texttt{score}(\hat{y}, x, t) - \sum_{y' \in \mathcal{K}} \mathbf{1}[y' = \bar{y}] \nabla \texttt{score}(y', x, t) \right\}$$

- MMR:
- MMR and MAVER are more "aggressive" than MML
 - MMR and MAVER update towards to one program
 - MML updates toward to all programs that can generate the correct answer

Conclusion

- Discussed problem with search and update steps in semantic parsing from denotation.
- Introduced policy shaping for biasing the search away from spurious programs.
- Introduced generalized update equation that generalizes common update strategies and allows novel updates.
- Policy shaping allows more aggressive update!

Generalized Update as an Analysis Tool

$$\Delta = \sum_{y \in \mathcal{K}} w(y, x, t) \left\{ \nabla \texttt{score}_{\theta}(y, x, t) - \sum_{y' \in \mathcal{K}} q(y' \mid x, t) \nabla \texttt{score}_{\theta}(y', x, t) \right\}$$

- MMR and MAVER are more "aggressive" than MML
 - MMR and MAVER only pick one
 - MML gives credits to all {y} that satisfies {z}
 - MMR and MAVER benefit more from shaping

Learning from Indirect Supervision

• Question x, Table t, Answer z, Parameters θ

(1) [Search for Training] With x, t, z, beam search suitable $\{y'\}$

• Search in training. Goal: finding semantically correct **y'**

2 [Update] Update θ, according {y'}

• Many different ways of update θ

Shaping and update

Better search ⇒ more aggressive update

2 [Update] Update θ , according K = {y'}

• What is the better objective function $\int_{\theta?} \in \text{Shaping affects here indirectly}$

Novel Learning Algorithm

Intensity	Competing Distribution	Dev Performance	
		w/o shaping	
Maximum Marginal Likelihood (MML)	Maximum Marginal Likelihood (MML)	32.4	
Maximum Margin Reward (MMR)	Maximum Margin Reward (MMR)	40.7	
Maximum Margin Reward (MMR)	Maximum Marginal Likelihood (MML)	41.9	

• Mixing the MMR's intensity and MML's competing distribution gives an update that outperforms MMR.

Novel Learning Algorithms

- Novel update equations can be derived by changing w and q.
- For example,

$$\Delta = \sum_{y \in \mathcal{K}} \frac{p(z, y | x, t)}{\sum_{y'} p(z, y' | x, t)} \left\{ \nabla \text{score}_{\theta}(y, x, t) - \sum_{y' \in \mathcal{K}} \frac{\mathbf{1}\{y \in \mathcal{V}\}}{|\mathcal{V}|} \nabla \text{score}_{\theta}(y', x, t) \right\}$$

- Intensity of MML
- Competing distribution of MAVER
- Allows iterating over various updates (including standard ones) by treating them as parameters of a single equation.

Learning Method #1 – Maximum Marginal Likelihood (MML)

• Given a set of programs ${\mathcal K}$ found by search, maximize the log marginal likelihood.

$$\mathcal{J} = \log p(z|x,t) = \log \sum_{y \in \mathcal{K}} p(z,y|x,t) = \log \sum_{y \in \mathcal{K}} p(z|y)p(y|x,t)$$

where $p(y|x,t) \propto \exp\{\operatorname{score}_{\theta}(y,x,t)\}\$ p(z|y) = 1 if y produces answer z, else 0

Learning Method #2 – Reinforcement Learning (RL)

• Given a set of programs \mathcal{K} found by search and a reward function $R(\cdot, \cdot)$, maximize the expected reward.

$$\mathcal{J} = \sum_{y \in \mathcal{K}} p(y|x, t) R(y, z)$$

- Policy Gradient: Gradient approximated by sampling a program y_{samp} from \mathcal{K}

Learning Method #3 – Maximum Margin Reward (MMR)

Given a set of programs *K* found by search and a reward function *R*(·,·), we define the violated set as:

$$\mathcal{V} = \{ y | \text{score}(\hat{y}, x, t) < \text{score}(y, x, t) + \delta(\hat{y}, y', z); y \in \mathcal{K} \}$$

where \hat{y} is a maximum reward program in \mathcal{K} , margin $\delta(\hat{y}, y, z) = R(\hat{y}, z) - R(y, z)$

• MMR minimizes the largest violation corresponding to y' $\mathcal{J} = -\{|\mathcal{V}| > 0\}\{\operatorname{score}(y', x, t) - \operatorname{score}(\hat{y}, x, t) + \delta(\hat{y}, y', z)\}$

Learning Method #4 – Maximum Margin Average Violation Reward (MAVER)

- Minimizing only the most violation makes MMR less stable.
- Therefore, we consider a novel stable alternative that minimizes average violation.

$$\mathcal{J} = -\frac{1}{|\mathcal{V}|} \sum_{y \in \mathcal{V}} \{\operatorname{score}(y', x, t) - \operatorname{score}(\hat{y}, x, t) + \delta(\hat{y}, y', z)\}$$