
Appendix

8.1 Deriving the updates of common algorithms
Below we derive the gradient of various learning algorithms. We assume access to a training data
{(xi, ti, zi)}Ni=1 with N examples. Given an input instruction x and table t, we model the score of a
program using a score function score✓(y, x, z) with parameters ✓. When the model is probabilistic, we
assume it is a Boltzmann distribution given by p(y | x, t) / exp{score✓(y, x, t)}.

In our result, we will be using.
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Maximum Marginal Likelihood The maximum marginal objective JMML can be expressed as:

JMML =
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log
X

y2Gen(ti,zi)

p(y | xi, ti)

where Gen(t, z) is the set of all programs from Y that generate the answer z on table t. Taking the
derivative gives us:
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Then using Equation 10, we get:
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where

w(y, x, t) =
p(y | x, t)P

y02Gen(t,z) p(y0 | x, t)

Policy Gradient Methods Reinforcement learning based approaches maximize the expected reward
objective.

JRL =
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We can then compute the derivate of this objective as:
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The above summation can be expressed as expectation (Williams, 1992).
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For every example i, we sample a program yi from Y using the policy p(. | xi, ti). In practice this
sampling is done over the output programs of the search step.
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using gradient of log p(. | .)
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Off-Policy Policy Gradient Methods In off-policy policy gradient method, instead of sampling a
program using the current policy p(. | .), we use a separate exploration policy u(. | .). For the ith

training example, we sample a program yi from the exploration policy u(. | xi, ti, zi). Thus the gradient
of expected reward objective from previous paragraph can be expressed as:
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using, for every i yi ⇠ u(. | xi, ti, zi)
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the ratio of p(y|x,t)
u(y|x,t,z) is the importance weight correction. In practice, we sample a program from the

output of the search step.

Maximum Margin Reward (MMR) For the ith training example, let K(xi, ti, zi) be the set of pro-
grams produced by the search step. Then MMR finds the highest scoring program in this set, which
evaluates to the correct answer. Let this program be yi. MMR optimizes the parameter to satisfy the
following constraint:

score✓(yi, xi, ti) � score✓(y
0, xi, ti) + �(yi, y

0, zi) y0 2 Y (15)

where the margin �(yi, y0, zi) is given by R(yi, zi)�R(y0, zi). Let V be the set of violations given by:
V = {score✓(y0, xi, ti) � score✓(yi, xi, ti) + �(yi, y0, zi) > 0 | y 2 Y}.

At each training step, MMR only considers the program which is most violating the constraint. When
|V| > 0 then let y⇤ be the most violating program given by:

ȳ = arg max
y02Y
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Using the most violation approximation, the objective for MMR can be expressed as negative of hinge
loss:

JMMR = �max{0, score✓(ȳ, xi, ti) � score✓(yi, xi, ti) + R(yi, zi) � R(ȳ, zi)} (16)



Our definition of y⇤ allows us to write the above objective as:

JMMR = � {V > 0}{score✓(ȳ, xi, ti) � score✓(yi, xi, ti) + R(yi, zi) � R(ȳ, zi)} (17)

the gradient is then given by:

r✓JMMR = � {V > 0}{r✓score✓(ȳ, xi, ti) �r✓score✓(yi, xi, ti)} (18)

Maximum Margin Average Violation Reward (MAVER) Given a training example, MAVER con-
siders the same constraints and margin as MMR. However instead of considering only the most violated
program, it considers all violations. Formally, for every example (xi, ti, zi) we compute the ideal pro-
gram yi as in MMR. We then optimize the average negative hinge loss error over all violations:
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Taking the derivative we get:
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8.2 Changes to DynSP Parser
We make following 3 changes to the DynSP parser to increase its representational power. The new parser
is called DynSP++. We describe these three changes below:

1. We add two new actions: disjunction (OR) and follow-up cell (FpCell). The disjunction operation
is used to describe multiple conditions together example:

Question: what is the population of USA or China?

Program: Select Population Where Name = China OR Name = USA

Follow-up cell is only used for a question which is following another question and whose answer is
a single cell in the table. Follow-up cell is used to select values for another column corresponding
to this cell.

Question: and who scored that point?

Program: Select Name Follow-Up Cell

2. We add surface form features in the model for column and cell. These features trigger on token
match between an entity in the table (column name or cell value) and a question. We consider two
tokens: exact match and overlap. The exact match is 1.0 when every token in the entity is present in
the question and 0 otherwise. Overlap feature is 1.0 when atleast one token in the entity is present
in the question and 0 otherwise. We also consider related-column features that were considered
by Krishnamurthy et al. (2017).

3. We also add recall features which measure how many tokens in the question that are also present in
the table are covered by a given program. To compute this feature, we first compute the set E1 of all
tokens in the question that are also present in the table. We then find a set of non-keyword tokens E2
that are present in the program. The recall score is then given by w ⇤ |E1�E2|

|E1| , where w is a learned
parameter.


